cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342463 a(n) = A342001(A342456(n)); "wild part" of the arithmetic derivative of A342456(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 12, 8, 1, 2, 6, 4, 50, 24, 16, 16, 1, 2, 6, 4, 126, 62, 46, 26, 1486, 100, 1142, 48, 2056, 32, 342, 10, 1, 2, 6, 4, 94, 24, 72, 18, 242, 120, 1588, 54, 3408, 92, 1740, 22, 6846, 2972, 4340, 766, 5048, 1374, 652, 376, 71156, 22710, 20390, 64, 738580, 4272, 568, 20, 1, 2, 6, 4, 264, 12, 196, 8, 318
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

Like in A342462, also here the subsequences starting at each n = 2^k seem to be slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, ...

Crossrefs

Programs

  • Mathematica
    Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &@ f@ a[#] &, 73, 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    \\ Needs also code from A342456.
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    A342463(n) = A342001(A342456(n));

Formula

a(n) = A342001(A342456(n)) = A342002(A329886(n)) = A342920(A005940(1+n)).

A342457 Terms of A342456 prime-shifted so far towards lower primes that they become even: a(n) = 2*A246277(A342456(n)).

Original entry on oeis.org

2, 2, 2, 4, 2, 4, 6, 6, 2, 4, 64, 16, 324, 36, 10, 36, 2, 4, 64, 16, 2304, 96, 486, 24, 7290, 104976, 21600, 1296, 1708593750000, 100, 93750, 10, 2, 4, 64, 16, 144, 6, 216, 6, 172186884, 7776, 2160, 216, 216000000, 236196, 10497600, 54, 10935000000000, 53144100, 1476225000000, 7290, 122500000000, 10935000, 140, 360
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

These terms have the same prime signature as the corresponding terms in A342456, thus applying omega and bigomega to these gives the same derived sequences A342461 and A342462.

Crossrefs

Programs

  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A342457(n) = 2*A246277(A342456(n)); \\ Uses also code from A342456.

Formula

a(n) = 2*A246277(A342456(n)) = 2*A329038(A329886(n)).

A342001 Arithmetic derivative without its inherited divisor; the arithmetic derivative of n divided by A003557(n), which is a common divisor of both n and A003415(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 5, 1, 3, 2, 7, 1, 8, 1, 9, 8, 4, 1, 7, 1, 12, 10, 13, 1, 11, 2, 15, 3, 16, 1, 31, 1, 5, 14, 19, 12, 10, 1, 21, 16, 17, 1, 41, 1, 24, 13, 25, 1, 14, 2, 9, 20, 28, 1, 9, 16, 23, 22, 31, 1, 46, 1, 33, 17, 6, 18, 61, 1, 36, 26, 59, 1, 13, 1, 39, 11, 40, 18, 71, 1, 22, 4, 43, 1, 62, 22, 45, 32, 35, 1, 41, 20
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2021

Keywords

Comments

See also the scatter plot of A342002 that seems to reveal some interesting internal structure in this sequence, not fully explained by the regularity of primorial base expansion used in the latter sequence. - Antti Karttunen, May 09 2022

Crossrefs

Cf. A342002 [= a(A276086(n))], A342463 [= a(A342456(n))], A351945 [= a(A181819(n))], A353571 [= a(A003961(n))].
Cf. A346485 (Möbius transform), A347395 (convolution with Liouville's lambda), A347961 (with itself), and A347234, A347235, A347954, A347959, A347963, A349396, A349612 (for convolutions with other sequences).
Cf. A007947.

Programs

  • Mathematica
    Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &, 91] (* Michael De Vlieger, Mar 11 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A342001(n):
        q = prod(f:=factorint(n))
        return sum(q*e//p for p, e in f.items()) # Chai Wah Wu, Nov 04 2022

Formula

a(n) = A003415(n) / A003557(n).
For all n >= 0, a(A276086(n)) = A342002(n).
a(n) = A342414(n) * A342416(n) = A342459(n) * A342919(n). - Antti Karttunen, Apr 30 2022
Dirichlet g.f.: Dirichlet g.f. of A007947 * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)) = zeta(s) * Product_{p prime} (1+p^(1-s)-p^(-s)) * Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 05 2022
Sum_{k=1..n} a(k) ~ c * A065464 * Pi^2 * n^2 / 12, where c = Sum_{j>=2} (1/2 + (-1)^j * (Fibonacci(j) - 1/2))*PrimeZetaP(j) = 0.4526952873143153104685540856936425315834753528741817723313791528384... - Vaclav Kotesovec, May 09 2022

A342462 Sum of digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 6, 4, 6, 4, 2, 4, 1, 2, 6, 4, 10, 6, 6, 4, 8, 12, 10, 8, 22, 4, 8, 2, 1, 2, 6, 4, 6, 2, 6, 2, 18, 10, 8, 6, 18, 12, 16, 4, 26, 16, 24, 8, 20, 14, 4, 6, 26, 16, 14, 8, 30, 6, 8, 4, 1, 2, 6, 4, 14, 12, 12, 8, 18, 12, 24, 4, 8, 12, 14, 4, 24, 20, 28, 20, 26, 16, 16, 12, 32, 26, 24, 14, 28, 16
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

From David A. Corneth's Feb 27 2019 comment in A276150 follows that the only odd terms in this sequence are 1's occurring at 0 and at two's powers.
Subsequences starting at each n = 2^k are slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, 180, 24, etc.. Compare also to the behaviors of A324342 and A342463.

Crossrefs

Programs

Formula

a(n) = A001222(A342456(n)) = A001222(A342457(n)).
a(n) = A276150(A329886(n)) = A324888(A005940(1+n)).
a(n) >= A342461(n).
For n >= 0, a(2^n) = 1.

A342461 Number of nonzero digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 2, 5, 4, 3, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 2, 4, 3, 4, 3, 4, 3, 4, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A001221(A342456(n)) = A001221(A342457(n)).
a(n) = A267263(A329886(n)) = A329040(A005940(1+n)).
a(n) <= A342462(n).
For n >= 0, a(2^n) = 1.

A342464 Largest digit value when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 6, 4, 4, 2, 1, 2, 1, 2, 6, 4, 8, 5, 5, 3, 6, 8, 5, 4, 11, 2, 6, 1, 1, 2, 6, 4, 4, 1, 3, 1, 16, 5, 4, 3, 9, 10, 8, 3, 10, 12, 10, 6, 10, 7, 2, 3, 18, 10, 5, 4, 12, 2, 4, 2, 1, 2, 6, 4, 13, 12, 10, 8, 12, 8, 13, 2, 4, 6, 7, 2, 15, 15, 12, 10, 9, 8, 7, 6, 10, 12, 10, 9, 11, 6, 9, 6, 18, 15
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A328114(A329886(n)) = A051903(A342456(n)) = A329344(A005940(1+n)).
Showing 1-6 of 6 results.