cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A342456 A276086 applied to the primorial inflation of Doudna-tree, where A276086(n) is the prime product form of primorial base expansion of n.

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 35, 15, 11, 49, 117649, 625, 717409, 1225, 55, 225, 13, 121, 1771561, 2401, 36226650889, 184877, 1127357, 875, 902613283, 514675673281, 3780549773, 1500625, 83852850675321384784127, 3025, 62004635, 21, 17, 169, 4826809, 14641, 8254129, 143, 2924207, 77, 8223741426987700773289, 59797108943, 546826709
Offset: 0

Views

Author

Keywords

Comments

This sequence (which could be viewed as a binary tree, like the underlying A005940 and A329886) is similar to A324289, but unlike its underlying tree A283477 that generates only numbers that are products of distinct primorial numbers (i.e., terms of A129912), here the underlying tree A329886 generates all possible products of primorial numbers, i.e., terms of A025487, but in different order.

Crossrefs

Cf. A005940, A025487, A108951, A129912, A276086, A283980, A324886, A342457 [= 2*A246277(a(n))], A342461 [= A001221(a(n))], A342462 [= A001222(a(n))], A342463 [= A342001(a(n))], A342464 [= A051903(a(n))].
Cf. A324289 (a subset of these terms, in different order).

Programs

  • Mathematica
    Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] :=
    Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[f@ a[#] &, 43, 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)};
    A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2)));
    A342456(n) = A276086(A329886(n));

Formula

a(n) = A276086(A329886(n)) = A324886(A005940(1+n)).
For all n >= 0, gcd(a(n), A329886(n)) = 1.
For all n >= 1, A055396(a(n))-1 = A061395(A329886(n)) = A290251(n) = 1+A080791(n).
For all n >= 0, a(2^n) = A000040(2+n).

A342462 Sum of digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 6, 4, 6, 4, 2, 4, 1, 2, 6, 4, 10, 6, 6, 4, 8, 12, 10, 8, 22, 4, 8, 2, 1, 2, 6, 4, 6, 2, 6, 2, 18, 10, 8, 6, 18, 12, 16, 4, 26, 16, 24, 8, 20, 14, 4, 6, 26, 16, 14, 8, 30, 6, 8, 4, 1, 2, 6, 4, 14, 12, 12, 8, 18, 12, 24, 4, 8, 12, 14, 4, 24, 20, 28, 20, 26, 16, 16, 12, 32, 26, 24, 14, 28, 16
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

From David A. Corneth's Feb 27 2019 comment in A276150 follows that the only odd terms in this sequence are 1's occurring at 0 and at two's powers.
Subsequences starting at each n = 2^k are slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, 180, 24, etc.. Compare also to the behaviors of A324342 and A342463.

Crossrefs

Programs

Formula

a(n) = A001222(A342456(n)) = A001222(A342457(n)).
a(n) = A276150(A329886(n)) = A324888(A005940(1+n)).
a(n) >= A342461(n).
For n >= 0, a(2^n) = 1.

A342457 Terms of A342456 prime-shifted so far towards lower primes that they become even: a(n) = 2*A246277(A342456(n)).

Original entry on oeis.org

2, 2, 2, 4, 2, 4, 6, 6, 2, 4, 64, 16, 324, 36, 10, 36, 2, 4, 64, 16, 2304, 96, 486, 24, 7290, 104976, 21600, 1296, 1708593750000, 100, 93750, 10, 2, 4, 64, 16, 144, 6, 216, 6, 172186884, 7776, 2160, 216, 216000000, 236196, 10497600, 54, 10935000000000, 53144100, 1476225000000, 7290, 122500000000, 10935000, 140, 360
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

These terms have the same prime signature as the corresponding terms in A342456, thus applying omega and bigomega to these gives the same derived sequences A342461 and A342462.

Crossrefs

Programs

  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A342457(n) = 2*A246277(A342456(n)); \\ Uses also code from A342456.

Formula

a(n) = 2*A246277(A342456(n)) = 2*A329038(A329886(n)).
Showing 1-3 of 3 results.