cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A342456 A276086 applied to the primorial inflation of Doudna-tree, where A276086(n) is the prime product form of primorial base expansion of n.

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 35, 15, 11, 49, 117649, 625, 717409, 1225, 55, 225, 13, 121, 1771561, 2401, 36226650889, 184877, 1127357, 875, 902613283, 514675673281, 3780549773, 1500625, 83852850675321384784127, 3025, 62004635, 21, 17, 169, 4826809, 14641, 8254129, 143, 2924207, 77, 8223741426987700773289, 59797108943, 546826709
Offset: 0

Views

Author

Keywords

Comments

This sequence (which could be viewed as a binary tree, like the underlying A005940 and A329886) is similar to A324289, but unlike its underlying tree A283477 that generates only numbers that are products of distinct primorial numbers (i.e., terms of A129912), here the underlying tree A329886 generates all possible products of primorial numbers, i.e., terms of A025487, but in different order.

Crossrefs

Cf. A005940, A025487, A108951, A129912, A276086, A283980, A324886, A342457 [= 2*A246277(a(n))], A342461 [= A001221(a(n))], A342462 [= A001222(a(n))], A342463 [= A342001(a(n))], A342464 [= A051903(a(n))].
Cf. A324289 (a subset of these terms, in different order).

Programs

  • Mathematica
    Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] :=
    Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[f@ a[#] &, 43, 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)};
    A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2)));
    A342456(n) = A276086(A329886(n));

Formula

a(n) = A276086(A329886(n)) = A324886(A005940(1+n)).
For all n >= 0, gcd(a(n), A329886(n)) = 1.
For all n >= 1, A055396(a(n))-1 = A061395(A329886(n)) = A290251(n) = 1+A080791(n).
For all n >= 0, a(2^n) = A000040(2+n).

A342463 a(n) = A342001(A342456(n)); "wild part" of the arithmetic derivative of A342456(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 12, 8, 1, 2, 6, 4, 50, 24, 16, 16, 1, 2, 6, 4, 126, 62, 46, 26, 1486, 100, 1142, 48, 2056, 32, 342, 10, 1, 2, 6, 4, 94, 24, 72, 18, 242, 120, 1588, 54, 3408, 92, 1740, 22, 6846, 2972, 4340, 766, 5048, 1374, 652, 376, 71156, 22710, 20390, 64, 738580, 4272, 568, 20, 1, 2, 6, 4, 264, 12, 196, 8, 318
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

Like in A342462, also here the subsequences starting at each n = 2^k seem to be slowly converging towards A329886: 1, 2, 6, 4, 30, 12, 36, 8, 210, 60, ...

Crossrefs

Programs

  • Mathematica
    Block[{a, f, r = MixedRadix[Reverse@ Prime@ Range@ 24]}, f[n_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, Reverse@ IntegerDigits[n, r]]; a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@ #1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[#1/#2 & @@ {If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &@ Abs[#], #/Times @@ FactorInteger[#][[All, 1]]} &@ f@ a[#] &, 73, 0]] (* Michael De Vlieger, Mar 17 2021 *)
  • PARI
    \\ Needs also code from A342456.
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    A342463(n) = A342001(A342456(n));

Formula

a(n) = A342001(A342456(n)) = A342002(A329886(n)) = A342920(A005940(1+n)).

A342461 Number of nonzero digits when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 2, 5, 4, 3, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 2, 4, 3, 4, 3, 4, 3, 4, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 4
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A001221(A342456(n)) = A001221(A342457(n)).
a(n) = A267263(A329886(n)) = A329040(A005940(1+n)).
a(n) <= A342462(n).
For n >= 0, a(2^n) = 1.

A342457 Terms of A342456 prime-shifted so far towards lower primes that they become even: a(n) = 2*A246277(A342456(n)).

Original entry on oeis.org

2, 2, 2, 4, 2, 4, 6, 6, 2, 4, 64, 16, 324, 36, 10, 36, 2, 4, 64, 16, 2304, 96, 486, 24, 7290, 104976, 21600, 1296, 1708593750000, 100, 93750, 10, 2, 4, 64, 16, 144, 6, 216, 6, 172186884, 7776, 2160, 216, 216000000, 236196, 10497600, 54, 10935000000000, 53144100, 1476225000000, 7290, 122500000000, 10935000, 140, 360
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Comments

These terms have the same prime signature as the corresponding terms in A342456, thus applying omega and bigomega to these gives the same derived sequences A342461 and A342462.

Crossrefs

Programs

  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2);
    A342457(n) = 2*A246277(A342456(n)); \\ Uses also code from A342456.

Formula

a(n) = 2*A246277(A342456(n)) = 2*A329038(A329886(n)).

A342464 Largest digit value when A329886(n) is written in primorial base, where A329886 is the primorial inflation of Doudna-tree.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 6, 4, 4, 2, 1, 2, 1, 2, 6, 4, 8, 5, 5, 3, 6, 8, 5, 4, 11, 2, 6, 1, 1, 2, 6, 4, 4, 1, 3, 1, 16, 5, 4, 3, 9, 10, 8, 3, 10, 12, 10, 6, 10, 7, 2, 3, 18, 10, 5, 4, 12, 2, 4, 2, 1, 2, 6, 4, 13, 12, 10, 8, 12, 8, 13, 2, 4, 6, 7, 2, 15, 15, 12, 10, 9, 8, 7, 6, 10, 12, 10, 9, 11, 6, 9, 6, 18, 15
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A328114(A329886(n)) = A051903(A342456(n)) = A329344(A005940(1+n)).

A342397 Expansion of the o.g.f. (2*x^2 + 3*x + 2)*x/((x + 1)^2*(x - 1)^4).

Original entry on oeis.org

0, 2, 7, 18, 35, 62, 98, 148, 210, 290, 385, 502, 637, 798, 980, 1192, 1428, 1698, 1995, 2330, 2695, 3102, 3542, 4028, 4550, 5122, 5733, 6398, 7105, 7870, 8680, 9552, 10472, 11458, 12495, 13602, 14763, 15998, 17290, 18660, 20090, 21602, 23177, 24838, 26565, 28382, 30268, 32248, 34300, 36450
Offset: 0

Views

Author

Petros Hadjicostas, Mar 10 2021

Keywords

Comments

One-half of the antidiagonal sums of array A220508.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2x^2+3x+2) x/((x+1)^2 (x-1)^4),{x,0,70}],x] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{0,2,7,18,35,62},70] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    /* First program */
    seq1(n)={my(x='x+O('x^n)); Vec((2*x^2 + 3*x + 2)*x/((x + 1)^2*(x - 1)^4), -n)}
    /* Second program (array M is A220508) */
    seq2(nn) = {my(M=matrix(nn+1, nn+1)); my(a=vector(nn+1)); for(n=1, nn+1, for(k=1, nn+1, M[n, k]=if(k == n, n^2-n, if(k < n, n^2-2*n+k, k^2-n)))); for(n=1, nn+1, a[n] = sum(k=1, n, M[n-k+1,k])/2); a}

Formula

a(n) = (n+1)*(1 - (-1)^n)/16 + (7/4)*(binomial(n+3, 3) - binomial(n+2, 2)).
a(n) = (A342362(n) - (n + 1))/4.
a(2*n) = A169607(n) and a(2*n + 1) = 2*A004126(n + 1).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5. - Chai Wah Wu, Mar 11 2021
Showing 1-6 of 6 results.