A343237 Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
Examples
The array A begins: n\k 0 1 2 3 4 5 6 7 8 9 ... ------------------------------------------------------------- 0: 1 1 1 1 1 1 1 1 1 1 ... 1: 1 3 5 7 9 11 13 15 17 19 ... 2: 1 7 19 37 61 91 127 169 217 271 ... 3: 1 15 65 175 369 671 1105 1695 2465 3439 ... 4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ... 5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ... ... The triangle T begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... ------------------------------------------------------------- 0: 1 1: 1 1 2: 1 3 1 3: 1 7 5 1 4: 1 15 19 7 1 5: 1 31 65 37 9 1 6: 1 63 211 175 61 11 1 7: 1 127 665 781 369 91 13 1 8: 1 255 2059 3367 2101 671 127 15 1 9: 1 511 6305 14197 11529 4651 1105 169 17 1 10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1 ... Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_) The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are: j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2; j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3; j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3). Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Crossrefs
Programs
-
Maple
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12): cx := n -> series(n!*coeff(ser, x, n), y, 12): Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9): for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
Mathematica
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
Formula
Array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0.
A(n-1, k-1) = Sum_{j=1} binomial(n, j)*(k-1)^(n-j) = Sum_{j=0} binomial(n, j)*(k-1)^(n-j) - (k-1)^n = (1+(k-1))^n - (k-1)^n = k^n - (k-1)^n (from the combinatorial comment on A(n-1, k-1) above).
O.g.f. row n of array A: RA(n, x) = P(n, x)/(1 - x)^n, with P(n, x) = Sum_{m=0..n} A008292(n+1, m+1)*x^m, (the Eulerian number triangle A008292 has offset 1) for n >= 0. (See the Oct 26 2008 comment in A047969 by Peter Bala). RA(n, x) = polylog(-(n+1), x)*(1-x)/x. (For P(n, x) see the formula by Vladeta Jovovic, Sep 02 2002.)
E.g.f. of e.g.f.s of the rows of array A: EE(x, y) = exp(x)*(1 + y*(exp(x) - 1))*exp(y*exp(x)), that is A(n, k) = [y^k/k!][x^n/n!] EE(x, y).
Triangle T(n, m) = A(n-m, m) = (m+1)^(n-m+1) - m^(n-m+1), n >= 0, m = 0, 1, ..., n.
E.g.f.: -(exp(x)-1)/(x*exp(x)*y-x). - Vladimir Kruchinin, Nov 02 2022
Comments