cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047969 Square array of nexus numbers a(n,k) = (n+1)^(k+1) - n^(k+1) (n >= 0, k >= 0) read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 7, 19, 15, 1, 1, 9, 37, 65, 31, 1, 1, 11, 61, 175, 211, 63, 1, 1, 13, 91, 369, 781, 665, 127, 1, 1, 15, 127, 671, 2101, 3367, 2059, 255, 1, 1, 17, 169, 1105, 4651, 11529, 14197, 6305, 511, 1, 1, 19, 217, 1695, 9031
Offset: 0

Views

Author

Keywords

Comments

If each row started with an initial 0 (i.e., a(n,k) = (n+1)^k - n^k) then each row would be the binomial transform of the preceding row. - Henry Bottomley, May 31 2001
a(n-1, k-1) is the number of ordered k-tuples of positive integers such that the largest of these integers is n. - Alford Arnold, Sep 07 2005
From Alford Arnold, Jul 21 2006: (Start)
The sequences in A047969 can also be calculated using the Eulerian Array (A008292) and Pascal's Triangle (A007318) as illustrated below: (cf. A101095).
1 1 1 1 1 1
1 1 1 1 1 1
-----------------------------------------
1 2 3 4 5 6
1 2 3 4 5
1 3 5 7 9 11
-----------------------------------------
1 3 6 10 15 21
4 12 24 40 60
1 3 6 10
1 7 19 37 61 91
-----------------------------------------
1 4 10 20 35 56
11 44 110 220 385
11 44 110 220
1 4 10
1 15 65 175 369 671
----------------------------------------- (End)
From Peter Bala, Oct 26 2008: (Start)
The above remarks of Alford Arnold may be summarized by saying that (the transpose of) this array is the Hilbert transform of the triangle of Eulerian numbers A008292 (see A145905 for the definition of the Hilbert transform). In this context, A008292 is best viewed as the array of h-vectors of permutohedra of type A. See A108553 for the Hilbert transform of the array of h-vectors of type D permutohedra. Compare this array with A009998.
The polynomials n^k - (n-1)^k, k = 1,2,3,..., which give the nonzero entries in the columns of this array, satisfy a Riemann hypothesis: their zeros lie on the vertical line Re s = 1/2 in the complex plane. See A019538 for the connection between the polynomials n^k - (n-1)^k and the Stirling polynomials of the simplicial complexes dual to the type A permutohedra.
(End)
Empirical: (n+1)^(k+1) - n^(k+1) is the number of first differences of length k+1 arrays of numbers in 0..n, k > 0. - R. H. Hardin, Jun 30 2013
a(n-1, k-1) is the number of bargraphs of width k and height n. Examples: a(1,2) = 7 because we have [1,1,2], [1,2,1], [2,1,1], [1,2,2], [2,1,2], [2,2,1], and [2,2,2]; a(2,1) = 5 because we have [1,3], [2,3], [3,1], [3,2], and [3,3] (bargraphs are given as compositions). This comment is equivalent to A. Arnold's Sep 2005 comment. - Emeric Deutsch, Jan 30 2017

Examples

			Array a begins:
  [n\k][0  1   2    3    4   5  6  ...
  [0]   1  1   1    1    1   1  1  ...
  [1]   1  3   7   15   31  63  ...
  [2]   1  5  19   65  211  ...
  [3]   1  7  37  175  ...
  ...
Triangle T begins:
  n\m   0   1    2     3     4      5      6      7      8     9  10 ...
  0:    1
  1:    1   1
  2:    1   3    1
  3:    1   5    7     1
  4:    1   7   19    15     1
  5:    1   9   37    65    31      1
  6:    1  11   61   175   211     63      1
  7:    1  13   91   369   781    665    127      1
  8:    1  15  127   671  2101   3367   2059    255      1
  9:    1  17  169  1105  4651  11529  14197   6305    511     1
  10:   1  19  217  1695  9031  31031  61741  58975  19171  1023   1
  ...  - _Wolfdieter Lang_, May 07 2021
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Cf. A047970.
Cf. A009998, A108553 (Hilbert transform of array of h-vectors of type D permutohedra), A145904, A145905.
Row n sequences of array a: A000012, A000225(k+1), A001047(k+1), A005061(k+1), A005060(k+1), A005062(k+1), A016169(k+1), A016177(k+1), A016185(k+1), A016189(k+1), A016195(k+1), A016197(k+1).
Column k sequences of array a: (nexus numbers): A000012, A005408, A003215, A005917(n+1), A022521, A022522, A022523, A022524, A022525, A022526, A022527, A022528.
Cf. A343237 (row reversed triangle).

Programs

  • Mathematica
    Flatten[Table[n = d - e; k = e; (n + 1)^(k + 1) - n^(k + 1), {d, 0, 100}, {e, 0, d}]] (* T. D. Noe, Feb 22 2012 *)
  • Maxima
    T(n,m):=if m=0 then 1 else sum(k!*(-1)^(m+k)*stirling2(m,k)*binomial(n+k-1,n),k,0,m); /* Vladimir Kruchinin, Jan 28 2018 */

Formula

From Vladimir Kruchinin: (Start)
O.g.f. of e.g.f of rows of array: ((1-x)*exp(y))/(1-x*exp(y))^2.
T(n,m) = Sum_{k=0..m} k!*(-1)^(m+k)*Stirling2(m,k)*C(n+k-1,n), T(n,0)=1.(End)
From Wolfdieter Lang, May 07 2021: (Start)
T(n,m) = a(n-m,m) = (n-m+1)^(m+1) - (n-m)^(m+1), n >= 0, m = 0, 1,..., n.
O.g.f. column k of the array: polylog(-(k+1), x)*(1-x)/x. See the Peter Bala comment above, and the Eulerian triangle A008292 formula by Vladeta Jovovic, Sep 02 2002.
E.g.f. of e.g.f. of row of the array: exp(y)*(1 + x*(exp(y) - 1))*exp(x*exp(y)).
O.g.f. of triangle's exponential row polynomials R(n, y) = Sum_{m=0} T(n, m)*(y^m)/m!: G(x, y) = exp(x*y)*(1 - x)/(1 - x*exp(x*y))^2. (End)

A056151 Distribution of maximum inversion table entry.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 10, 6, 1, 15, 38, 42, 24, 1, 31, 130, 222, 216, 120, 1, 63, 422, 1050, 1464, 1320, 720, 1, 127, 1330, 4686, 8856, 10920, 9360, 5040, 1, 255, 4118, 20202, 50424, 80520, 91440, 75600, 40320, 1, 511, 12610, 85182, 276696, 558120, 795600, 851760, 685440, 362880
Offset: 1

Views

Author

Wouter Meeussen, Aug 05 2000

Keywords

Comments

T(n,k) is the number of permutations p of [n] such that max(p(i) - i) = k. Example: T(3,0) = 1 because for p = 123 we have max(p(i) - i) = 0; T(3,1) = 3 because for p = 132, 213, 231 we have max(p(i) - i) = 1; T(3,2) = 2 because for p = 312, 321 we have max(p(i) - i) = 2. - Emeric Deutsch, Nov 12 2004
T(n,k) is the number of permutations of [n] for which the first subcedance occurs at position n + 2 - k. A subcedance of pi occurs at position i if i>pi(i). For example, with n = 3 and k = 2, T(n,k) = 3 counts 132, 231, 321 in each of which the first subcedance occurs at position n+2-k = 3. - David Callan, Dec 14 2021

Examples

			Triangle starts:
  1;
  1,   1;
  1,   3,    2;
  1,   7,   10,     6;
  1,  15,   38,    42,    24;
  1,  31,  130,   222,   216,   120;
  1,  63,  422,  1050,  1464,  1320,   720;
  1, 127, 1330,  4686,  8856, 10920,  9360,  5040;
  1, 255, 4118, 20202, 50424, 80520, 91440, 75600, 40320;
		

References

  • R. Sedgewick and Ph. Flajolet, "An Introduction to the Analysis of Algorithms", Addison-Wesley, 1996, ISBN 0-201-40009-X, table 6.10 (page 356)

Crossrefs

Columns and diagonals give A000225, A018927, A056182, A000142, A056197.
Cf. A343237.

Programs

  • Maple
    T:=proc(n,k) if k>0 and k<=n then k!*(k+1)^(n-k)-(k-1)!*k^(n-k+1) elif k=0 then 1 else 0 fi end: TT:=(n,k)->T(n,k-1): matrix(10,10,TT);
    # Alternative, assuming offset 0:
    egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
    cx := n -> series(coeff(ser, x, n), y, 12):
    T := (n, k) -> k!^2 * (n-k)! * coeff(cx(n - k), y, k):
    for n from 0 to 6 do seq(T(n, k), k=0..n) od; # Peter Luschny, Dec 14 2021
  • Mathematica
    T[, 0] = 1; T[n, k_] := k! (k + 1)^(n - k) - (k - 1)! k^(n - k + 1);
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 03 2017 *)

Formula

Table[ -((-1 + k)^(1 - k + n)*(-1 + k)!) + k^(-k + n)*k!, {n, 1, 9}, {k, 1, n} ]
T(n, k) = k!(k+1)^(n-k) - (k-1)!k^(n-k+1) if 0Emeric Deutsch, Nov 12 2004
From Peter Luschny, Dec 14 2021: (Start)
We assume T with offset 0.
T(n, k) = k!^2 * (n-k)! * [y^k] [x^(n-k)] (exp(exp(x)*y + x)*(exp(x)*y - y + 1)).
T(n, k) = k!*A343237(n, k). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000

A372118 Square array A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2 for k, n >= 0 read by ascending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 6, 1, 15, 25, 9, 1, 31, 90, 55, 12, 1, 63, 301, 285, 97, 15, 1, 127, 966, 1351, 660, 151, 18, 1, 255, 3025, 6069, 4081, 1275, 217, 21, 1, 511, 9330, 26335, 23772, 9751, 2190, 295, 24, 1, 1023, 28501, 111645, 133057, 70035, 19981, 3465, 385, 27, 1
Offset: 0

Views

Author

Werner Schulte, Apr 19 2024

Keywords

Comments

Depending on some fixed integer m >= 0 we define a family of square arrays A(m; n, k) = (Sum_{i=0..m} (-1)^i * binomial(m, i) * (k + m - i)^(n+m)) / m! for k, n >= 0. Special cases are: A004248 (m=0), A343237 (m=1) and this array (m=2). The A(m; n, k) satisfy: A(m; n, k) = (k+m) * A(m; n-1, k) + A(m-1; n, k) with initial values A(0; n, k) = k^n and A(m; 0, k) = 1.
Further properties are conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+m} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+m, m) * A048993(n+m, k+m) * x^k);
(3) The LU decompositions of these arrays are given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(m; n, k) = A048993(n+m, k+m) * (k+m)! / m!, i.e., A(m; n, k) = Sum_{i=0..k} L(m; n, i) * binomial(k, i).
The three conjectures are true, see links. - Sela Fried, Jul 07 2024

Examples

			Square array A(n, k) starts:
n\k :    0     1       2       3        4         5         6         7
=======================================================================
  0 :    1     1       1       1        1         1         1         1
  1 :    3     6       9      12       15        18        21        24
  2 :    7    25      55      97      151       217       295       385
  3 :   15    90     285     660     1275      2190      3465      5160
  4 :   31   301    1351    4081     9751     19981     36751     62401
  5 :   63   966    6069   23772    70035    170898    365001    706104
  6 :  127  3025   26335  133057   481951   1398097   3463615   7628545
  7 :  255  9330  111645  724260  3216795  11075670  31794105  79669320
  etc.
		

Crossrefs

Rows: A000012 (n=0), A008585 (n=1), A227776 (n=2).
Columns: A000225 (k=0), A000392 (k=1), A016269 (k=2), A016753 (k=3), A016103 (k=4), A019757 (k=5), A020570 (k=6), A020782 (k=7).
Main diagonal: A281596(n+2).

Programs

  • Mathematica
    A372118[n_, k_] := ((k+2)^(n+2) - 2*(k+1)^(n+2) + k^(n+2))/2;
    Table[A372118[n-k, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jul 10 2024 *)
  • PARI
    A(n, k) = ((k+2)^(n+2) - 2 * (k+1)^(n+2) + k^(n+2))/2

Formula

A(n, k) = (k+2) * A(n-1, k) + (k+1)^(n+1) - k^(n+1) for n > 0.
Conjectures:
(1) O.g.f. of column k is Prod_{i=k..k+2} 1 / (1 - i * t);
(2) E.g.f. of row n is exp(x) * (Sum_{k=0..n} binomial(k+2, 2) * A048993(n+2, k+2) * x^k);
(3) The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L, where L is defined L(n, k) = A048993(n+2, k+2) * (k+2)! / 2!, i.e., A(n, k) = Sum_{i=0..k} L(n, i) * binomial(k, i).
The three conjectures are true. See comments. - Sela Fried, Jul 09 2024
Showing 1-3 of 3 results.