cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A221490 Number of primes of the form k*n + k - n, 1 <= k <= n.

Original entry on oeis.org

0, 0, 1, 1, 3, 1, 2, 2, 5, 3, 6, 3, 5, 4, 4, 3, 9, 2, 6, 5, 8, 4, 9, 4, 9, 7, 10, 4, 17, 3, 10, 9, 11, 9, 15, 4, 9, 10, 13, 5, 20, 7, 11, 10, 16, 8, 19, 6, 18, 12, 17, 5, 23, 9, 18, 9, 15, 8, 26, 7, 15, 12, 16, 13, 29, 8, 18, 13, 26, 9, 25, 10, 19, 18, 16
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 19 2013

Keywords

Comments

Number of primes in n-th row of the triangle in A209297.
Number of primes along the main diagonal of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows (see square arrays in example). - Wesley Ivan Hurt, May 15 2021

Examples

			Row 10 of A209297 = [1,12,23,34,45,56,67,78,89,100] containing three primes: [23,67,89], therefore a(10) = 3;
row 11 of A209297 = [1,13,25,37,49,61,73,85,97,109,121] containing six primes: [13,37,61,73,97,109], therefore a(11) = 6.
From _Wesley Ivan Hurt_, May 15 2021: (Start)
                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        0         1            1                 3
------------------------------------------------------------------------
(End)
		

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..n} A010051(A209297(n,k)).
a(n) = Sum_{k=1..n} c(n*(k-1)+k), where c is the prime characteristic. - Wesley Ivan Hurt, May 15 2021

A344349 Number of primes along the main antidiagonal of the n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 2, 3, 2, 3, 2, 6, 2, 3, 3, 6, 3, 7, 4, 7, 6, 6, 4, 10, 2, 8, 7, 9, 4, 11, 5, 10, 8, 11, 4, 17, 3, 10, 10, 12, 9, 16, 4, 10, 11, 14, 6, 21, 7, 11, 10, 16, 8, 19, 6, 19, 13, 17, 5, 25, 10, 19, 10, 16, 9, 27, 7, 16, 13, 16, 13, 31, 9, 18, 14, 27, 10, 26, 10, 20, 19, 17, 12, 30
Offset: 1

Views

Author

Wesley Ivan Hurt, May 15 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        2         3            2                 3
------------------------------------------------------------------------
  primes   {}      {2,3}    {3,5,7}       {7,13}          {5,13,17}
------------------------------------------------------------------------
		

Crossrefs

Cf. A010051, A221490, A344316 (primes along border).

Programs

  • Mathematica
    Table[Sum[PrimePi[n*k - k + 1] - PrimePi[n*k - k], {k, n}], {n, 100}]

Formula

a(n) = Sum_{k=1..n} c(n*k-k+1), where c is the prime characteristic.

A344846 Sum of the prime numbers appearing along the border of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 5, 12, 23, 44, 80, 136, 195, 225, 329, 320, 694, 791, 808, 899, 953, 1378, 2485, 1905, 2152, 2898, 3364, 2577, 4913, 4061, 5589, 4638, 6978, 5432, 10814, 5305, 10157, 9135, 10507, 10976, 15342, 5149, 14352, 16891, 17827, 11327, 26086, 14738, 19337, 23838, 30784, 16701
Offset: 1

Views

Author

Wesley Ivan Hurt, May 29 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        5         12          23                44
------------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] + Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]

Formula

a(n) = Sum_{k=1..n} ((n^2-k+1) * c(n^2-k+1) + k * c(k)) + Sum_{k=1..n-2} ((n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.

A342695 a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 0, 1, 2, 4, 4, 8, 10, 14, 15, 21, 21, 27, 31, 36, 42, 48, 46, 58, 61, 68, 73, 83, 83, 96, 100, 110, 114, 127, 123, 144, 146, 157, 165, 175, 179, 201, 201, 212, 221, 241, 235, 258, 265, 275, 282, 303, 301, 328, 330, 346, 351, 381, 377, 403, 406, 427, 433, 455, 452, 486, 493
Offset: 1

Views

Author

Wesley Ivan Hurt, May 18 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        0         1            2                 4
------------------------------------------------------------------------
  primes   {}       {}        {5}        {7,11}         {7,13,17,19}
------------------------------------------------------------------------
		

Crossrefs

Cf. A000720 (pi), A038107, A221490, A344316 (on border), A344349.

Programs

  • Mathematica
    Table[PrimePi[n*(n - 1)] - PrimePi[n] - Sum[PrimePi[n*k + 1] - PrimePi[n*k], {k, n - 2}], {n, 100}]

Formula

a(n) = pi(n*(n-1)) - pi(n) - Sum_{k=1..n-2} (pi(n*k+1) - pi(n*k)).

A344847 Sum of the prime numbers in, but not on the border of, an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows.

Original entry on oeis.org

0, 0, 5, 18, 56, 80, 192, 306, 566, 731, 1273, 1433, 2123, 3023, 3762, 5128, 6604, 7038, 9694, 11735, 13942, 16695, 21015, 22027, 28292, 31972, 37830, 41516, 50405, 51983, 64936, 70032, 80537, 90331, 100611, 108869, 130965, 134475, 149660, 165879, 191969, 196185, 223782
Offset: 1

Views

Author

Wesley Ivan Hurt, May 29 2021

Keywords

Examples

			                                                      [1   2  3  4  5]
                                      [1   2  3  4]   [6   7  8  9 10]
                            [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                   [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
           [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
------------------------------------------------------------------------
  n         1        2         3            4                 5
------------------------------------------------------------------------
  a(n)      0        0         5           18                56
------------------------------------------------------------------------
		

Crossrefs

Cf. A010051, A344316, A344846 (sum of primes on border).

Programs

  • Mathematica
    Table[Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n^2}] - Sum[(n^2 - k + 1) (PrimePi[n^2 - k + 1] - PrimePi[n^2 - k]) + k (PrimePi[k] - PrimePi[k - 1]), {k, n}] - Sum[(n*j + 1) (PrimePi[n*j + 1] - PrimePi[n*j]), {j, n - 2}], {n, 60}]

Formula

a(n) = (Sum_{k=1..n^2} k * c(k)) - (Sum_{k=1..n} (n^2-k+1) * c(n^2-k+1) + k * c(k)) - (Sum_{k=1..n-2} (n*k+1) * c(n*k+1)), where c(n) is the prime characteristic.
Showing 1-5 of 5 results.