cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003349 Numbers that are the sum of 4 positive 5th powers.

Original entry on oeis.org

4, 35, 66, 97, 128, 246, 277, 308, 339, 488, 519, 550, 730, 761, 972, 1027, 1058, 1089, 1120, 1269, 1300, 1331, 1511, 1542, 1753, 2050, 2081, 2112, 2292, 2323, 2534, 3073, 3104, 3128, 3159, 3190, 3221, 3315, 3370, 3401, 3432, 3612, 3643, 3854, 4096, 4151, 4182, 4213
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
670593 is in the sequence as 670593 = 1^5 + 8^5 + 10^5 + 14^5.
862512 is in the sequence as 862512 = 7^5 + 9^5 + 12^5 + 14^5.
1892695 is in the sequence as 1892695 = 1^5 + 1^5 + 5^5 + 18^5. (End)
		

Crossrefs

Programs

  • Mathematica
    f@n_:= Select[Range@n,IntegerPartitions[#,{4},Range@(n^(1/5))^5] != {} &]; f@10000 (* Hans Rudolf Widmer, Dec 04 2022 *)

Extensions

Incorrect program removed by David A. Corneth, Aug 03 2020

A342685 Numbers that are the sum of five fifth powers in two or more ways.

Original entry on oeis.org

4097, 51446, 51477, 51688, 52469, 54570, 59221, 68252, 68905, 84213, 110494, 131104, 151445, 212496, 300277, 325174, 325713, 355114, 422135, 422738, 589269, 637418, 794434, 810820, 876734, 876765, 876976, 877757, 879858, 884509, 893540, 909501, 924912, 935782, 976733, 995571, 1037784, 1083457
Offset: 1

Views

Author

David Consiglio, Jr., May 17 2021

Keywords

Examples

			51477 = 2^5 + 4^5 + 7^5 + 7^5 + 7^5
      = 2^5 + 5^5 + 6^5 + 6^5 + 8^5
so 51477 is a term.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 5):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 2])
    for x in range(len(rets)):
        print(rets[x])

A309763 Numbers that are the sum of 4 nonzero 4th powers in more than one way.

Original entry on oeis.org

259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16578, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 15 2019

Keywords

Examples

			259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4, so 259 is in the sequence.
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    V:= Vector(N, datatype=integer[4]):
    for a from 1 while a^4 <= N do
      for b from 1 to a while a^4+b^4 <= N do
        for c from 1 to b while a^4 + b^4+ c^4 <= N do
          for d from 1 to c do
             v:= a^4+b^4+c^4+d^4;
             if v > N then break fi;
             V[v]:= V[v]+1
    od od od od:
    select(i -> V[i]>1, [$1..N]); # Robert Israel, Oct 07 2019
  • Mathematica
    Select[Range@20000, Length@Select[PowersRepresentations[#, 4, 4], ! MemberQ[#, 0] &] > 1 &]

A344645 Numbers that are the sum of four fifth powers in exactly two ways.

Original entry on oeis.org

51445, 876733, 1646240, 3558289, 4062500, 5687000, 7962869, 8227494, 9792364, 9924675, 10908544, 12501135, 15249850, 18317994, 18804544, 20611151, 20983875, 21297837, 23944908, 24201342, 24598407, 27806867, 28055456, 29480343, 31584102, 32557875, 32814683, 35469555, 40882844, 45177175
Offset: 1

Views

Author

David Consiglio, Jr., May 25 2021

Keywords

Comments

Differs from A344644 at term 508 because 1479604544 = 3^5 + 49^5 + 53^5 + 62^5 = 14^5 + 37^5 + 52^5 + 65^5 = 19^5 + 37^5 + 45^5 + 67^5

Examples

			1646240 is a term because 1646240 = 9^5 + 15^5 + 15^5 + 15^5 = 11^5 + 13^5 + 13^5 + 17^5
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 500)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v == 2])
    for x in range(len(rets)):
        print(rets[x])

A345010 Numbers that are the sum of three fifth powers in two or more ways.

Original entry on oeis.org

1375298099, 1419138368, 2370099168, 5839897526, 16681039431, 27326512069, 28461637018, 34090335168, 44009539168, 45412427776, 47166830151, 57788232400, 75843173376, 89516861675, 89636142881, 140201053499, 186876720832, 191701358025, 209797492893, 220333644849
Offset: 1

Views

Author

David Consiglio, Jr., Jun 14 2021

Keywords

Comments

No numbers that are the sum of three fifth powers in three ways have been found. As a result, there is no corresponding sequence for the sum of three fifth powers in exactly two ways.

Examples

			1419138368 is a term because 1419138368 = 13^5 + 51^5 + 64^5  = 18^5 + 44^5 + 66^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 3):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 2])
    for x in range(len(rets)):
        print(rets[x])

A345337 Numbers that are the sum of four fifth powers in three or more ways.

Original entry on oeis.org

1479604544, 8429250269, 31738437018, 47347345408, 101802671905, 213625838382, 269736008608, 288202145792, 353946845525, 355891431456, 359543904192, 434029382875, 453675031150, 467943544849, 470899924000, 476304861791, 568433238331, 690221638656, 706199665600
Offset: 1

Views

Author

David Consiglio, Jr., Jun 14 2021

Keywords

Comments

No numbers that are the sum of four fifth powers in four ways have been found. As a result, there is no corresponding sequence for the sum of four fifth powers in exactly three ways.

Examples

			8429250269 is a term because 8429250269 = 4^5 + 41^5 + 73^5 + 91^5  = 13^5 + 28^5 + 82^5 + 86^5  = 21^5 + 27^5 + 68^5 + 93^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 4):
        tot = sum(pos)
        keep[tot] += 1
    rets = sorted([k for k, v in keep.items() if v >= 3])
    for x in range(len(rets)):
        print(rets[x])
Showing 1-6 of 6 results.