A345118 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a basketweave pattern where all the multiple strands are of unit width, the horizontal ones appearing as 1 X 3 rectangles, while the vertical ones as unit area squares.
0, 4, 11, 20, 34, 50, 69, 92, 116, 144, 175, 208, 246, 286, 329, 376, 424, 476, 531, 588, 650, 714, 781, 852, 924, 1000, 1079, 1160, 1246, 1334, 1425, 1520, 1616, 1716, 1819, 1924, 2034, 2146, 2261, 2380, 2500, 2624, 2751, 2880, 3014, 3150, 3289, 3432, 3576, 3724
Offset: 0
Examples
Illustrations for n = 1..8: _ _ _ _ _ _ |_| |_|_| |_ _ _| |_ _| |_|_|_| |_ _ _| a(1) = 4 a(2) = 11 a(3) = 20 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |_ _|_|_| |_ _|_|_ _| |_|_|_ _ _|_| |_|_ _ _| |_|_ _ _|_| |_ _ _|_|_ _| |_ _|_|_| |_ _|_|_ _| |_|_|_ _ _|_| |_|_ _ _| |_|_ _ _|_| |_ _ _|_|_ _| |_ _|_|_ _| |_|_|_ _ _|_| |_ _ _|_|_ _| a(4) = 34 a(5) = 50 a(6) = 69 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| |_ _ _|_|_ _ _| |_|_ _ _|_|_ _ _| |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| |_ _ _|_|_ _ _| |_|_ _ _|_|_ _ _| |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| |_ _ _|_|_ _ _| |_|_ _ _|_|_ _ _| |_|_|_ _ _|_|_| |_ _|_|_ _ _|_|_| |_|_ _ _|_|_ _ _| a(7) = 92 a(8) = 116
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,-1,3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3,1,-1,3,-3,1},{0,4,11,20,34,50,69},50] a[ n_] := (3*n^2 + 5*n)/2 - (-1)^Floor[n/4]*Boole[Mod[n, 4] == 3]; (* Michael Somos, Jan 25 2024 *)
-
PARI
concat(0, Vec(x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)) + O(x^40))) \\ Felix Fröhlich, Jun 09 2021
-
PARI
{a(n) = (3*n^2 + 5*n)/2 - (-1)^(n\4)*(n%4==3)}; /* Michael Somos, Jan 25 2024 */
Formula
O.g.f.: x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)).
E.g.f.: (exp(x)*x*(8 + 3*x) + (-1)^(1/4)*(sinh((-1)^(1/4)*x) - sin((-1)^(1/4)*x)))/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4) + 3*a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (n*(5 + 3*n) - (1 - (-1)^n)*sin((n-1)*Pi/4))/2.
a(2*n) = A211014(n).
From Helmut Ruhland, Jan 29 2024: (Start)
For n > 1: a(n) - (2 * A368052(n+2) + A368052(n+3)) * 2 is periodic for n mod 8, i.e. a(n) = (2 * A368052(n+2) + A368052(n+3)) * 2 + f8(n) with
n mod 8 = 0 1 2 3 4 5 6 7
f8(n) = 0 0 -3 -2 -2 -2 1 0 (End)