cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345521 Numbers that are the sum of seven cubes in three or more ways.

Original entry on oeis.org

222, 229, 248, 255, 262, 281, 283, 285, 318, 346, 370, 374, 377, 379, 381, 396, 400, 407, 412, 419, 426, 433, 437, 438, 444, 451, 463, 470, 472, 475, 477, 489, 494, 496, 501, 503, 505, 507, 510, 522, 529, 533, 536, 559, 564, 566, 568, 570, 577, 578, 584, 585
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			229 is a term because 229 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 5^3 = 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345560 Numbers that are the sum of six fourth powers in three or more ways.

Original entry on oeis.org

2676, 2851, 2916, 4131, 4226, 4241, 4306, 4371, 4481, 4850, 5346, 5411, 5521, 5586, 5651, 6561, 6611, 6626, 6691, 6756, 6771, 6801, 6821, 6836, 6851, 6866, 6931, 7106, 7235, 7475, 7491, 7666, 7841, 7906, 7971, 8146, 8211, 8321, 8386, 8451, 8531, 8706, 9011
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2851 is a term because 2851 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345568 Numbers that are the sum of seven fourth powers in two or more ways.

Original entry on oeis.org

262, 277, 292, 307, 342, 357, 372, 422, 437, 502, 517, 532, 547, 597, 612, 677, 772, 787, 852, 886, 901, 916, 966, 981, 1027, 1046, 1141, 1156, 1221, 1362, 1377, 1396, 1442, 1510, 1525, 1557, 1572, 1587, 1590, 1617, 1637, 1652, 1717, 1765, 1812, 1827, 1892
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			277 is a term because 277 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345570 Numbers that are the sum of seven fourth powers in four or more ways.

Original entry on oeis.org

2932, 4147, 4212, 4387, 5427, 5602, 5667, 6627, 6642, 6692, 6707, 6772, 6817, 6822, 6837, 6852, 6867, 6882, 6947, 7012, 7122, 7251, 7316, 7491, 7747, 7857, 7922, 7987, 8052, 8097, 8162, 8227, 8402, 8467, 8532, 8707, 8787, 8962, 9027, 9092, 9157, 9172, 9202
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4147 is a term because 4147 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345578 Numbers that are the sum of eight fourth powers in three or more ways.

Original entry on oeis.org

518, 2678, 2693, 2708, 2738, 2758, 2773, 2838, 2853, 2868, 2883, 2918, 2933, 2948, 2998, 3013, 3078, 3108, 3123, 3173, 3188, 3253, 3302, 3317, 3363, 3382, 3428, 3477, 3492, 3542, 3557, 3622, 3732, 3778, 3797, 3893, 3926, 3953, 3973, 3988, 4018, 4053, 4101
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2678 is a term because 2678 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345825 Numbers that are the sum of seven fourth powers in exactly three ways.

Original entry on oeis.org

2677, 2692, 2757, 2852, 2867, 2917, 2997, 3107, 3172, 3301, 3476, 3541, 3972, 4132, 4227, 4242, 4257, 4307, 4322, 4372, 4437, 4452, 4482, 4497, 4562, 4627, 4737, 4756, 4851, 4866, 4867, 4931, 4996, 5077, 5106, 5107, 5122, 5187, 5252, 5282, 5317, 5347, 5362
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345569 at term 7 because 2932 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.

Examples

			2692 is a term because 2692 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345606 Numbers that are the sum of seven fifth powers in three or more ways.

Original entry on oeis.org

84457, 166997, 324860, 326199, 358482, 359327, 391007, 391999, 408158, 455146, 455749, 486468, 502429, 572054, 595519, 614505, 622280, 648319, 671210, 672022, 696468, 696499, 696710, 697491, 699592, 704243, 713274, 729235, 755516, 796467, 857518, 877645
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			166997 is a term because 166997 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.