cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345569 Numbers that are the sum of seven fourth powers in three or more ways.

Original entry on oeis.org

2677, 2692, 2757, 2852, 2867, 2917, 2932, 2997, 3107, 3172, 3301, 3476, 3541, 3972, 4132, 4147, 4212, 4227, 4242, 4257, 4307, 4322, 4372, 4387, 4437, 4452, 4482, 4497, 4562, 4627, 4737, 4756, 4851, 4866, 4867, 4931, 4996, 5077, 5106, 5107, 5122, 5187, 5252
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2692 is a term because 2692 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345604 Numbers that are the sum of six fifth powers in three or more ways.

Original entry on oeis.org

696467, 893572, 1100264, 1109295, 1165727, 1711776, 2007401, 2025309, 2221767, 2801812, 3047519, 3310494, 3360608, 3550866, 3559556, 3576120, 3807122, 3907101, 4055922, 4093540, 4096114, 4104067, 4123363, 4135578, 4155107, 4195571, 4222339, 4326784, 4417112
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			893572 is a term because 893572 = 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5 = 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345605 Numbers that are the sum of seven fifth powers in two or more ways.

Original entry on oeis.org

4099, 4130, 4161, 4341, 4372, 4583, 5122, 5153, 5364, 6145, 7223, 7254, 7465, 8246, 10347, 11874, 11905, 12116, 12897, 14998, 19649, 20905, 20936, 21147, 21928, 24029, 28680, 36866, 36897, 37108, 37711, 37889, 39990, 40138, 44641, 51393, 51448, 51479, 51510
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4130 is a term because 4130 = 1^5 + 1^5 + 2^5 + 4^5 + 4^5 + 4^5 + 4^5 = 1^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 2])
        for x in range(len(rets)):
            print(rets[x])

A345607 Numbers that are the sum of seven fifth powers in four or more ways.

Original entry on oeis.org

893604, 1117071, 1182534, 1414559, 1629244, 1933328, 2280543, 2586035, 2867074, 3050644, 3055295, 3055977, 3256432, 3329360, 3369543, 3436058, 3551890, 3576363, 3896969, 3914877, 3930849, 4055954, 4087746, 4088690, 4093572, 4096665, 4098161, 4104068, 4104310
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			1117071 is a term because 1117071 = 1^5 + 2^5 + 6^5 + 7^5 + 7^5 + 14^5 + 14^5 = 2^5 + 2^5 + 4^5 + 6^5 + 10^5 + 12^5 + 15^5 = 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 7^5 + 16^5 = 3^5 + 5^5 + 6^5 + 6^5 + 7^5 + 8^5 + 16^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345611 Numbers that are the sum of eight fifth powers in three or more ways.

Original entry on oeis.org

52417, 54518, 69634, 70954, 84458, 84489, 84700, 85481, 87582, 92233, 101264, 102890, 112574, 117225, 119326, 134473, 143264, 143442, 143506, 149781, 151448, 158719, 159465, 165634, 166998, 167029, 167196, 167240, 168021, 170122, 174773, 183804, 184457
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			54518 is a term because 54518 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 7^5 + 7^5 + 7^5 = 1^5 + 4^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A346280 Numbers that are the sum of seven fifth powers in exactly three ways.

Original entry on oeis.org

84457, 166997, 324860, 326199, 358482, 359327, 391007, 391999, 408158, 455146, 455749, 486468, 502429, 572054, 595519, 614505, 622280, 648319, 671210, 672022, 696468, 696499, 696710, 697491, 699592, 704243, 713274, 729235, 755516, 796467, 857518, 877645
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345606 at term 39 because 893604 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5.

Examples

			84457 is a term because 84457 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.