cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A345825 Numbers that are the sum of seven fourth powers in exactly three ways.

Original entry on oeis.org

2677, 2692, 2757, 2852, 2867, 2917, 2997, 3107, 3172, 3301, 3476, 3541, 3972, 4132, 4227, 4242, 4257, 4307, 4322, 4372, 4437, 4452, 4482, 4497, 4562, 4627, 4737, 4756, 4851, 4866, 4867, 4931, 4996, 5077, 5106, 5107, 5122, 5187, 5252, 5282, 5317, 5347, 5362
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345569 at term 7 because 2932 = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.

Examples

			2692 is a term because 2692 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A346358 Numbers that are the sum of six fifth powers in exactly three ways.

Original entry on oeis.org

696467, 893572, 1100264, 1109295, 1165727, 1711776, 2007401, 2025309, 2221767, 2801812, 3047519, 3310494, 3360608, 3550866, 3559556, 3576120, 3807122, 3907101, 4055922, 4093540, 4096114, 4104067, 4123363, 4135578, 4155107, 4195571, 4222339, 4326784, 4417112
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345604 at term 105 because 12047994 = 7^5 + 9^5 + 12^5 + 14^5 + 17^5 + 25^5 = 5^5 + 10^5 + 13^5 + 15^5 + 16^5 + 25^5 = 1^5 + 1^5 + 3^5 + 4^5 + 21^5 + 24^5 = 4^5 + 6^5 + 15^5 + 15^5 + 21^5 + 23^5.

Examples

			696467 is a term because 696467 = 1^5 + 6^5 + 8^5 + 9^5 + 9^5 + 14^5 = 3^5 + 3^5 + 7^5 + 9^5 + 12^5 + 13^5 = 4^5 + 4^5 + 4^5 + 11^5 + 11^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 6):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])

A345606 Numbers that are the sum of seven fifth powers in three or more ways.

Original entry on oeis.org

84457, 166997, 324860, 326199, 358482, 359327, 391007, 391999, 408158, 455146, 455749, 486468, 502429, 572054, 595519, 614505, 622280, 648319, 671210, 672022, 696468, 696499, 696710, 697491, 699592, 704243, 713274, 729235, 755516, 796467, 857518, 877645
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			166997 is a term because 166997 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 8^5 = 4^5 + 6^5 + 6^5 + 7^5 + 7^5 + 7^5 + 10^5 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 8^5 + 10^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A346279 Numbers that are the sum of seven fifth powers in exactly two ways.

Original entry on oeis.org

4099, 4130, 4161, 4341, 4372, 4583, 5122, 5153, 5364, 6145, 7223, 7254, 7465, 8246, 10347, 11874, 11905, 12116, 12897, 14998, 19649, 20905, 20936, 21147, 21928, 24029, 28680, 36866, 36897, 37108, 37711, 37889, 39990, 40138, 44641, 51393, 51448, 51479, 51510
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345605 at term 156 because 84457 = 2^5 + 4^5 + 4^5 + 6^5 + 6^5 + 6^5 + 9^5 = 1^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 = 1^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5 + 8^5.

Examples

			4099 is a term because 4099 = 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346281 Numbers that are the sum of seven fifth powers in exactly four ways.

Original entry on oeis.org

893604, 1117071, 1182534, 1414559, 1629244, 1933328, 2280543, 2586035, 2867074, 3050644, 3055295, 3055977, 3256432, 3329360, 3369543, 3436058, 3551890, 3576363, 3896969, 3914877, 3930849, 4055954, 4087746, 4088690, 4093572, 4096665, 4098161, 4104068, 4104310
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345607 at term 92 because 6768576 = 4^5 + 6^5 + 6^5 + 6^5 + 9^5 + 12^5 + 23^5 = 1^5 + 3^5 + 4^5 + 8^5 + 11^5 + 17^5 + 22^5 = 6^5 + 12^5 + 13^5 + 14^5 + 15^5 + 15^5 + 21^5 = 8^5 + 10^5 + 12^5 + 12^5 + 16^5 + 18^5 + 20^5 = 8^5 + 8^5 + 14^5 + 14^5 + 14^5 + 18^5 + 20^5.

Examples

			893604 is a term because 893604 = 5^5 + 6^5 + 6^5 + 6^5 + 6^5 + 10^5 + 15^5 = 2^5 + 5^5 + 8^5 + 8^5 + 8^5 + 8^5 + 15^5 = 2^5 + 2^5 + 7^5 + 7^5 + 11^5 + 11^5 + 14^5 = 2^5 + 2^5 + 6^5 + 7^5 + 12^5 + 12^5 + 13^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 7):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A346328 Numbers that are the sum of eight fifth powers in exactly three ways.

Original entry on oeis.org

52417, 54518, 69634, 70954, 84458, 84489, 84700, 85481, 87582, 92233, 101264, 102890, 112574, 117225, 119326, 134473, 143264, 143442, 143506, 149781, 151448, 158719, 159465, 165634, 166998, 167029, 167196, 167240, 168021, 170122, 174773, 183804, 184457
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345611 at term 105 because 391250 = 2^5 + 3^5 + 5^5 + 5^5 + 5^5 + 8^5 + 10^5 + 12^5 = 1^5 + 1^5 + 4^5 + 7^5 + 8^5 + 8^5 + 9^5 + 12^5 = 2^5 + 3^5 + 4^5 + 4^5 + 6^5 + 9^5 + 11^5 + 11^5 = 1^5 + 3^5 + 3^5 + 5^5 + 8^5 + 8^5 + 11^5 + 11^5.

Examples

			52417 is a term because 52417 = 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 6^5 + 6^5 + 8^5 = 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 6^5 + 6^5 + 8^5 = 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 7^5 + 7^5 + 7^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 3])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.