cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A345543 Numbers that are the sum of nine cubes in four or more ways.

Original entry on oeis.org

224, 257, 264, 283, 320, 348, 355, 372, 374, 376, 381, 383, 390, 400, 402, 407, 409, 411, 413, 414, 416, 428, 435, 439, 442, 446, 450, 453, 454, 461, 465, 472, 474, 476, 479, 481, 486, 488, 491, 498, 500, 502, 503, 505, 507, 509, 510, 512, 514, 517, 519, 524
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			257 is a term because 257 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 + 4^3 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 5^3 = 1^3 + 1^3 + 1^3 + 2^3 + 3^3 + 3^3 + 3^3 + 3^3 + 3^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 3^3 + 3^3 + 4^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345579 Numbers that are the sum of eight fourth powers in four or more ways.

Original entry on oeis.org

2933, 2948, 3013, 3173, 3188, 3557, 4148, 4163, 4213, 4228, 4293, 4388, 4403, 4453, 4468, 4643, 4772, 4837, 4883, 5012, 5123, 5188, 5203, 5268, 5333, 5363, 5378, 5398, 5428, 5443, 5508, 5538, 5573, 5603, 5618, 5668, 5683, 5733, 5748, 5858, 5923, 6052, 6163
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2948 is a term because 2948 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345587 Numbers that are the sum of nine fourth powers in three or more ways.

Original entry on oeis.org

519, 534, 599, 774, 1143, 1364, 1539, 1604, 1619, 1814, 2579, 2644, 2659, 2679, 2694, 2709, 2724, 2739, 2754, 2759, 2774, 2789, 2819, 2834, 2839, 2854, 2869, 2884, 2899, 2919, 2934, 2949, 2964, 2994, 2999, 3014, 3029, 3079, 3094, 3109, 3124, 3139, 3159, 3174
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			534 is a term because 534 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 3])
        for x in range(len(rets)):
            print(rets[x])

A345589 Numbers that are the sum of nine fourth powers in five or more ways.

Original entry on oeis.org

3189, 4149, 4229, 4244, 4309, 4374, 4404, 4419, 4469, 4484, 4549, 4659, 4724, 4853, 4899, 5028, 5093, 5139, 5189, 5204, 5269, 5284, 5349, 5379, 5414, 5444, 5459, 5509, 5524, 5574, 5589, 5619, 5634, 5654, 5684, 5699, 5749, 5764, 5814, 5829, 5939, 6068, 6133
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			4149 is a term because 4149 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 = 4^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 5])
        for x in range(len(rets)):
            print(rets[x])

A345846 Numbers that are the sum of nine fourth powers in exactly four ways.

Original entry on oeis.org

2854, 2919, 2934, 2949, 2964, 3014, 3029, 3094, 3159, 3174, 3204, 3254, 3269, 3429, 3444, 3558, 3573, 3638, 3798, 3813, 3974, 4034, 4134, 4164, 4179, 4182, 4209, 4214, 4274, 4294, 4389, 4439, 4454, 4534, 4614, 4644, 4709, 4773, 4788, 4838, 4884, 4918, 4949
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345588 at term 11 because 3189 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 = 2^4 + 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4.

Examples

			2919 is a term because 2919 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 7^4 = 1^4 + 1^4 + 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 4])
        for x in range(len(rets)):
            print(rets[x])

A345597 Numbers that are the sum of ten fourth powers in four or more ways.

Original entry on oeis.org

1620, 2660, 2725, 2740, 2835, 2855, 2870, 2900, 2915, 2920, 2935, 2950, 2965, 2980, 3000, 3015, 3030, 3045, 3095, 3110, 3160, 3175, 3190, 3205, 3220, 3240, 3255, 3270, 3285, 3335, 3350, 3415, 3430, 3445, 3460, 3479, 3510, 3525, 3544, 3559, 3574, 3589, 3639
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			2660 is a term because 2660 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])

A345621 Numbers that are the sum of nine fifth powers in four or more ways.

Original entry on oeis.org

55542, 120350, 143507, 167241, 182549, 192233, 202890, 326685, 327986, 328247, 329028, 329809, 333257, 351722, 358474, 358968, 359210, 359538, 359813, 365404, 367071, 367313, 374034, 374846, 375627, 376619, 377158, 379259, 381157, 383910, 384765, 390396
Offset: 1

Views

Author

David Consiglio, Jr., Jun 20 2021

Keywords

Examples

			120350 is a term because 120350 = 1^5 + 3^5 + 4^5 + 5^5 + 7^5 + 7^5 + 7^5 + 8^5 + 8^5 = 1^5 + 3^5 + 5^5 + 5^5 + 6^5 + 6^5 + 8^5 + 8^5 + 8^5 = 2^5 + 4^5 + 4^5 + 4^5 + 6^5 + 7^5 + 7^5 + 7^5 + 9^5 = 2^5 + 4^5 + 4^5 + 5^5 + 6^5 + 6^5 + 6^5 + 8^5 + 9^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v >= 4])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-7 of 7 results.