cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003344 Numbers that are the sum of 10 positive 4th powers.

Original entry on oeis.org

10, 25, 40, 55, 70, 85, 90, 100, 105, 115, 120, 130, 135, 145, 150, 160, 165, 170, 180, 185, 195, 200, 210, 215, 225, 230, 245, 250, 260, 265, 275, 280, 290, 295, 310, 325, 330, 340, 345, 355, 360, 370, 375, 385, 390, 400, 405, 410, 420, 425, 435, 440, 450, 455, 465
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
5176 is in the sequence as 5176 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 5^4 + 5^4 + 5^4 + 5^4 + 7^4.
6901 is in the sequence as 6901 = 1^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4 + 6^4 + 6^4.
8502 is in the sequence as 8502 = 1^4 + 3^4 + 4^4 + 5^4 + 5^4 + 5^4 + 6^4 + 6^4 + 6^4 + 7^4. (End)
		

Crossrefs

Programs

  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(limit):
        pows4 = list(takewhile(lambda x: x <= limit, (i**4 for i in count(1))))
        sum10 = set(sum(c) for c in mc(pows4, 10) if sum(c) <= limit)
        return sorted(sum10)
    print(aupto(465)) # Michael S. Branicky, Oct 25 2021

A345843 Numbers that are the sum of nine fourth powers in exactly one ways.

Original entry on oeis.org

9, 24, 39, 54, 69, 84, 89, 99, 104, 114, 119, 129, 134, 144, 149, 164, 169, 179, 184, 194, 199, 209, 214, 229, 244, 249, 259, 274, 329, 354, 369, 384, 409, 419, 434, 449, 484, 489, 499, 514, 569, 594, 609, 624, 633, 648, 649, 659, 663, 674, 678, 689, 693, 708
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003343 at term 28 because 264 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.

Examples

			24 is a term because 24 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A345854 Numbers that are the sum of ten fourth powers in exactly two ways.

Original entry on oeis.org

265, 280, 295, 310, 325, 340, 345, 355, 360, 375, 390, 405, 420, 425, 440, 455, 470, 485, 505, 565, 580, 585, 595, 630, 645, 660, 665, 695, 710, 725, 745, 760, 805, 820, 835, 840, 870, 885, 889, 900, 904, 919, 920, 934, 935, 949, 950, 964, 965, 969, 984, 999
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345595 at term 20 because 520 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.

Examples

			280 is a term because 280 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A346346 Numbers that are the sum of ten fifth powers in exactly one way.

Original entry on oeis.org

10, 41, 72, 103, 134, 165, 196, 227, 252, 258, 283, 289, 314, 320, 345, 376, 407, 438, 469, 494, 500, 525, 531, 556, 587, 618, 649, 680, 711, 736, 742, 767, 798, 829, 860, 891, 922, 953, 978, 1009, 1033, 1040, 1064, 1071, 1095, 1102, 1126, 1133, 1157, 1164
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003355 at term 229 because 4102 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			10 is a term because 10 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A345803 Numbers that are the sum of ten cubes in exactly one ways.

Original entry on oeis.org

10, 17, 24, 31, 36, 38, 43, 45, 50, 52, 57, 59, 62, 64, 66, 69, 71, 76, 78, 83, 85, 87, 88, 90, 92, 94, 95, 97, 101, 102, 104, 106, 108, 109, 111, 113, 114, 115, 116, 118, 120, 121, 122, 123, 125, 127, 128, 129, 130, 132, 135, 137, 139, 140, 142, 143, 146
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003333 at term 18 because 73 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 4^3 = 1^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3.
Likely finite.

Examples

			17 is a term because 17 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-5 of 5 results.