cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003343 Numbers that are the sum of 9 positive 4th powers.

Original entry on oeis.org

9, 24, 39, 54, 69, 84, 89, 99, 104, 114, 119, 129, 134, 144, 149, 164, 169, 179, 184, 194, 199, 209, 214, 229, 244, 249, 259, 264, 274, 279, 294, 309, 324, 329, 339, 344, 354, 359, 369, 374, 384, 389, 404, 409, 419, 424, 434, 439, 449, 454, 469, 484, 489, 499, 504
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 02 2020: (Start)
4644 is in the sequence as 4644 = 1^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4.
7541 is in the sequence as 7541 = 1^4 + 1^4 + 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 6^4 + 8^4.
10855 is in the sequence as 10855 = 1^4 + 3^4 + 3^4 + 5^4 + 5^4 + 5^4 + 5^4 + 8^4 + 8^4. (End)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], AnyTrue[PowersRepresentations[#, 9, 4], First[#]>0&]&] (* Jean-François Alcover, Jul 18 2017 *)

A345844 Numbers that are the sum of nine fourth powers in exactly two ways.

Original entry on oeis.org

264, 279, 294, 309, 324, 339, 344, 359, 374, 389, 404, 424, 439, 454, 469, 504, 549, 564, 579, 584, 614, 629, 644, 664, 679, 694, 709, 759, 789, 804, 819, 839, 854, 869, 884, 888, 903, 918, 933, 934, 948, 949, 968, 983, 998, 1013, 1014, 1029, 1044, 1048, 1059
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A345586 at term 17 because 519 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.

Examples

			279 is a term because 279 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])

A345833 Numbers that are the sum of eight fourth powers in exactly one ways.

Original entry on oeis.org

8, 23, 38, 53, 68, 83, 88, 98, 103, 113, 118, 128, 133, 148, 163, 168, 178, 183, 193, 198, 213, 228, 243, 248, 258, 328, 338, 353, 368, 403, 408, 418, 433, 468, 483, 488, 498, 568, 578, 593, 608, 632, 643, 647, 648, 658, 662, 663, 673, 677, 692, 707, 708, 712
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003342 at term 26 because 263 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.

Examples

			23 is a term because 23 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 8):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A345853 Numbers that are the sum of ten fourth powers in exactly one ways.

Original entry on oeis.org

10, 25, 40, 55, 70, 85, 90, 100, 105, 115, 120, 130, 135, 145, 150, 160, 165, 170, 180, 185, 195, 200, 210, 215, 225, 230, 245, 250, 260, 275, 290, 330, 370, 385, 400, 410, 435, 450, 465, 490, 500, 515, 530, 570, 610, 625, 634, 640, 649, 650, 664, 675, 679
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003344 at term 30 because 265 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.

Examples

			25 is a term because 25 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346336 Numbers that are the sum of nine fifth powers in exactly one way.

Original entry on oeis.org

9, 40, 71, 102, 133, 164, 195, 226, 251, 257, 282, 288, 313, 344, 375, 406, 437, 468, 493, 499, 524, 555, 586, 617, 648, 679, 710, 735, 766, 797, 828, 859, 890, 921, 977, 1008, 1032, 1039, 1063, 1070, 1094, 1101, 1125, 1132, 1156, 1187, 1218, 1219, 1249, 1250
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003354 at term 191 because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			9 is a term because 9 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A345793 Numbers that are the sum of nine cubes in exactly one way.

Original entry on oeis.org

9, 16, 23, 30, 35, 37, 42, 44, 49, 51, 56, 58, 61, 63, 65, 68, 70, 75, 77, 79, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 100, 101, 103, 105, 107, 108, 110, 112, 113, 114, 115, 119, 120, 121, 122, 124, 126, 127, 128, 129, 131, 134, 135, 138, 139, 141, 142, 145
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003332 at term 18 because 72 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^2 + 1^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3 + 2^3.
Likely finite.

Examples

			16 is a term because 16 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**3 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-6 of 6 results.