cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003355 Numbers that are the sum of 10 positive 5th powers.

Original entry on oeis.org

10, 41, 72, 103, 134, 165, 196, 227, 252, 258, 283, 289, 314, 320, 345, 376, 407, 438, 469, 494, 500, 525, 531, 556, 587, 618, 649, 680, 711, 736, 742, 767, 798, 829, 860, 891, 922, 953, 978, 1009, 1033, 1040, 1064, 1071, 1095, 1102, 1126, 1133, 1157, 1164, 1188, 1219
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 03 2020: (Start)
23227 is in the sequence as 23227 = 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 5^5 + 7^5.
24600 is in the sequence as 24600 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 4^5 + 6^5 + 6^5 + 6^5.
32894 is in the sequence as 32894 = 1^5 + 3^5 + 4^5 + 4^5 + 4^5 + 5^5 + 5^5 + 6^5 + 6^5 + 6^5. (End)
		

Crossrefs

A345853 Numbers that are the sum of ten fourth powers in exactly one ways.

Original entry on oeis.org

10, 25, 40, 55, 70, 85, 90, 100, 105, 115, 120, 130, 135, 145, 150, 160, 165, 170, 180, 185, 195, 200, 210, 215, 225, 230, 245, 250, 260, 275, 290, 330, 370, 385, 400, 410, 435, 450, 465, 490, 500, 515, 530, 570, 610, 625, 634, 640, 649, 650, 664, 675, 679
Offset: 1

Views

Author

David Consiglio, Jr., Jun 26 2021

Keywords

Comments

Differs from A003344 at term 30 because 265 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.

Examples

			25 is a term because 25 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**4 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346336 Numbers that are the sum of nine fifth powers in exactly one way.

Original entry on oeis.org

9, 40, 71, 102, 133, 164, 195, 226, 251, 257, 282, 288, 313, 344, 375, 406, 437, 468, 493, 499, 524, 555, 586, 617, 648, 679, 710, 735, 766, 797, 828, 859, 890, 921, 977, 1008, 1032, 1039, 1063, 1070, 1094, 1101, 1125, 1132, 1156, 1187, 1218, 1219, 1249, 1250
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A003354 at term 191 because 4101 = 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			9 is a term because 9 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 9):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 1])
        for x in range(len(rets)):
            print(rets[x])

A346347 Numbers that are the sum of ten fifth powers in exactly two ways.

Original entry on oeis.org

4102, 4133, 4164, 4195, 4226, 4257, 4344, 4375, 4406, 4437, 4468, 4586, 4617, 4648, 4679, 4828, 4859, 4890, 5070, 5101, 5125, 5156, 5187, 5218, 5249, 5312, 5367, 5398, 5429, 5460, 5609, 5640, 5671, 5851, 5882, 6093, 6148, 6179, 6210, 6241, 6390, 6421, 6452
Offset: 1

Views

Author

David Consiglio, Jr., Jul 13 2021

Keywords

Comments

Differs from A345634 at term 67 because 8194 = 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 + 5^5 = 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 4^5 + 4^5 + 4^5 + 4^5 + 5^5 = 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5 + 4^5.

Examples

			4102 is a term because 4102 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5 + 5^5 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 4^5 + 4^5 + 4^5 + 4^5.
		

Crossrefs

Programs

  • Python
    from itertools import combinations_with_replacement as cwr
    from collections import defaultdict
    keep = defaultdict(lambda: 0)
    power_terms = [x**5 for x in range(1, 1000)]
    for pos in cwr(power_terms, 10):
        tot = sum(pos)
        keep[tot] += 1
        rets = sorted([k for k, v in keep.items() if v == 2])
        for x in range(len(rets)):
            print(rets[x])
Showing 1-4 of 4 results.