A153876 a(n) = Sum_{i=2^(n-1)..2^n-1} sigma_0(i), sigma_0(i) number of divisors of n, n positive integer.
1, 4, 11, 29, 68, 160, 364, 820, 1813, 3981, 8674, 18782, 40387, 86443, 184232, 391188, 827787, 1746443, 3674573, 7712561, 16151933, 33757505, 70422235, 146659055, 304947023, 633152157, 1312820598, 2718674046, 5623413203, 11618957217, 23982175093, 49452872529
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..76
Programs
-
PARI
a(n) = sum(i=2^(n-1), 2^n-1, numdiv(i)); \\ Michel Marcus, Oct 10 2021
-
Python
from math import isqrt def A153876(n): return ((t:=isqrt(b:=(1<
Chai Wah Wu, Oct 23 2023
Formula
a(n) = Sum_{k>=1} k * A346730(n,k). - Alois P. Heinz, Aug 01 2021
Extensions
a(14)-a(32) from Alois P. Heinz, Aug 01 2021
Comments