A347162 Sum of cubes of odd divisors of n that are < sqrt(n).
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 1, 28, 1, 1, 153, 1, 1, 28, 1, 126, 28, 1, 1, 28, 126, 344, 28, 1, 1, 153, 1, 1, 371, 1, 126, 28, 1, 1, 28, 469, 1, 28, 1, 1, 153
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[DivisorSum[n, #^3 &, # < Sqrt[n] && OddQ[#] &], {n, 1, 75}] nmax = 75; CoefficientList[Series[Sum[(2 k - 1)^3 x^(2 k (2 k - 1))/(1 - x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest scod[n_]:=Total[Select[Divisors[n],#
Harvey P. Dale, Jan 07 2022 *) -
PARI
a(n) = my(r=sqrt(n)); sumdiv(n, d, if ((d%2) && (d
Michel Marcus, Aug 21 2021
Formula
G.f.: Sum_{k>=1} (2*k - 1)^3 * x^(2*k*(2*k - 1)) / (1 - x^(2*k - 1)).