cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A347853 Primes at lower end of record gaps between prime octuplets given by A347852.

Original entry on oeis.org

88793, 284723, 1146773, 6560993, 74266253, 302542763, 3279413303, 4412997293, 11163865613, 42731353103, 67588200923, 90307985213, 108039383513, 253802571923, 378166268723, 508735164383, 912404760713, 1351905411533, 3353287304813, 4707449019173, 5993035649963, 7429168351463
Offset: 1

Views

Author

Hugo Pfoertner, Sep 16 2021

Keywords

Examples

			See A347852.
		

Crossrefs

Formula

a(n) == 173 (mod 210).

A022013 Initial members of prime octuplets (p, p+6, p+8, p+14, p+18, p+20, p+24, p+26).

Original entry on oeis.org

88793, 284723, 855713, 1146773, 6560993, 69156533, 74266253, 218033723, 261672773, 302542763, 964669613, 1340301863, 1400533223, 1422475913, 1837160183, 1962038783, 2117861723, 2249363093, 2272018733, 2558211563
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 173 (modulo 210). - Matt C. Anderson, May 26 2015

Crossrefs

A065706 is the union of A022011, A022012 and A022013.
A346998(n) = a(10^n).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [6,8,14,18,20,24,26] | IsPrime(p+r)}]; // Vincenzo Librandi, Sep 30 2015
    
  • Mathematica
    Select[Prime[Range[200000]], Union[PrimeQ[# + {6, 8, 14, 18, 20, 24, 26}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)
    Select[Prime[Range[125*10^6]],AllTrue[#+{6,8,14,18,20,24,26},PrimeQ]&] (* Harvey P. Dale, Jul 21 2025 *)
  • PARI
    forprime(p=2, 1e30, if (isprime(p+6) && isprime(p+8) && isprime(p+14) && isprime(p+18) && isprime(p+20) && isprime(p+24) && isprime(p+26) , print1(p", "))) \\ Altug Alkan, Sep 30 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 6,8,14,18,20,24,26); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A357890(n) + 173. - Hugo Pfoertner, Nov 18 2022

A347848 Record gaps between prime octuplets of the form p + {0, 2, 6, 8, 12, 18, 20, 26} (initial members are A022011), divided by 210.

Original entry on oeis.org

75048, 323655, 422750, 2073918, 4243118, 5993757, 7828766, 11528083, 12215588, 15097361, 15513531, 17010400, 31025397, 44928642, 57138204, 75017391, 81443987, 97313005, 109587483, 110514347, 120045110, 120244355, 140472479, 140771332, 142099045, 265356757, 332391121
Offset: 1

Views

Author

Hugo Pfoertner and Norman Luhn, Sep 16 2021

Keywords

Examples

			a(1) = (A022011(2) - A022012(1))/210 = (15760091 - 11)/210 = 75048; 11 = A347849(1).
a(5) = (A022011(21) - A022011(20))/210 = (3734403131 - 2843348351)/210 = 424318, exceeding all previous differences; 2843348351 = A347849(5).
		

Crossrefs

The primes at the lower end of the record gaps are given in A347849.

A347850 Record gaps between prime octuplets of the form p + {0, 2, 6, 12, 14, 20, 24, 26} (initial members are A022012), divided by 30.

Original entry on oeis.org

42, 3729, 82250, 605241, 1249017, 1734985, 1747606, 3550360, 9578800, 10562911, 12208504, 24101070, 26510262, 38121281, 38588851, 47884158, 50246371, 56392908, 59827439, 66233760, 114058040, 120197366, 141646351, 141808504, 153247005, 168751151, 235079194, 244505074
Offset: 1

Views

Author

Hugo Pfoertner and Norman Luhn, Sep 16 2021

Keywords

Examples

			a(1) = (A022012(2) - A022012(1))/30 = (1277 - 17)/30 = 42; 17 = A347851(1).
a(5) = (A022012(13) - A022012(12))/30 = (171958667 - 165531257)/30 = 214247, exceeding all previous differences; 1655531257 = A347851(5).
		

Crossrefs

The primes at the lower end of the record gaps are given in A347851.
Showing 1-4 of 4 results.