cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A347392 Numbers k such that nearest common ancestor of k and sigma(k) in Doudna tree (A347879) is the grandparent of k.

Original entry on oeis.org

8, 9, 12, 13, 24, 35, 160, 455, 42550, 127650, 8041950, 22469750, 58506250, 67409250, 175518750, 394055550, 4246782750
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

Note how 13 * 35 = 455.
If there exists any odd perfect numbers x, with sigma(x) = 2x, then 2*x would be a term of this sequence, as then sigma(2*x) = 6*x would be situated as a descendant under the other branch of the grandparent of 2*x (a parent of x), which is m = A064989(x), with m in A005101. Opn x itself would be a term of A336702. Furthermore, if such x is not a multiple of 3 (in which case m is odd and in A005231), then also 3x would be a term of this sequence as sigma(3*x) = 4*sigma(x) = 8*x would be situated as a grandchild of 2x, with 2x being a first cousin of 3x. Also, in that case, 6*x would be located in A336702 (particularly, in A027687) because then sigma(6*x) = 12*sigma(x) = 24*x = 4*(6*x).
.
<--A003961-- m ---(*2)--->
.............../ \...............
/ \
/ \
/ \
x 2m
etc..../ \......2x = sigma(x) 3x....../ \......4m
/ \ / \ / \
etc. \ etc. \ etc. etc.
\ \
4x sigma(2x) = 6x
/ \ / \
etc \ etc. \
\ \
8x = sigma(3x) 12x
if m odd \
\
24x = sigma(6x) if m odd.
.
Furthermore, if there were any hypothetical odd terms y in A005820 (triperfect numbers), then 2y would be a term of this sequence. See the diagram in A347391.
If it exists, a(18) > 2^33.

Examples

			455 is included in the sequence as sigma(455) = 672, and the nearest common ancestor of 455 and 672 in Doudna tree is 42, which is the grandparent of 455 [as 455 = A003961(A003961(42))] and the grand-grand-grand-parent of 672 [as 672 = (2^4)*42].
		

Crossrefs

Programs

A341510 Symmetric square array A(n,k) = A005940(1+A156552(n)+A156552(k)), read by antidiagonals starting with A(1,1).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 7, 8, 10, 8, 8, 8, 8, 10, 8, 9, 7, 15, 7, 7, 7, 15, 7, 9, 10, 8, 10, 12, 10, 10, 12, 10, 8, 10, 11, 15, 7, 15, 25, 15, 25, 15, 7, 15, 11, 12, 14, 12, 10, 12, 18, 18, 12, 10, 12, 14, 12, 13, 25, 21, 25, 15, 25, 11, 25, 15, 25, 21, 25, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 13 2021

Keywords

Comments

Considered as a binary operation on the positive integers, A(x, y) returns the term of the Doudna-sequence from the position that is the sum of the positions of x and y in the same sequence. (This is based on giving the Doudna-sequence an offset of 0, rather than 1 as used in A005940.) - Peter Munn, Feb 14 2021

Examples

			The top left 16x16 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,  9, 10,  11,  12,  13,  14,  15, 16,
   2,  3,  4,  5,  6,  9, 10,  7,  8, 15,  14,  25,  22,  21,  12, 11,
   3,  4,  5,  6,  9,  8, 15, 10,  7, 12,  21,  18,  33,  20,  25, 14,
   4,  5,  6,  9,  8,  7, 12, 15, 10, 25,  20,  27,  28,  35,  18, 21,
   5,  6,  9,  8,  7, 10, 25, 12, 15, 18,  35,  16,  55,  30,  27, 20,
   6,  9,  8,  7, 10, 15, 18, 25, 12, 27,  30,  11,  42,  45,  16, 35,
   7, 10, 15, 12, 25, 18, 11, 16, 27, 14,  49,  20,  77,  50,  21, 24,
   8,  7, 10, 15, 12, 25, 16, 27, 18, 11,  24,  21,  40,  49,  14, 45,
   9,  8,  7, 10, 15, 12, 27, 18, 25, 16,  45,  14,  63,  24,  11, 30,
  10, 15, 12, 25, 18, 27, 14, 11, 16, 21,  50,  35,  70,  75,  20, 49,
  11, 14, 21, 20, 35, 30, 49, 24, 45, 50,  13,  36, 121,  22,  75, 32,
  12, 25, 18, 27, 16, 11, 20, 21, 14, 35,  36,  45,  60, 125,  30, 75,
  13, 22, 33, 28, 55, 42, 77, 40, 63, 70, 121,  60,  17,  98, 105, 48,
  14, 21, 20, 35, 30, 45, 50, 49, 24, 75,  22, 125,  98,  33,  36, 13,
  15, 12, 25, 18, 27, 16, 21, 14, 11, 20,  75,  30, 105,  36,  35, 50,
  16, 11, 14, 21, 20, 35, 24, 45, 30, 49,  32,  75,  48,  13,  50, 81,
		

Crossrefs

Cf. A341511 (the lower triangular section).
Cf. A003961 (main diagonal), A329603 (skewed diagonal).
Cf. A297165 (row 2 and column 2, when started from its term a(1)).

Programs

  • PARI
    up_to = 105;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341510sq(n,k) = A005940(1+A156552(n)+A156552(k));
    A341510list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A341510sq(col,(a-(col-1))))); (v); };
    v341510 = A341510list(up_to);
    A341510(n) = v341510[n];

Formula

A(n, k) = A(k, n) = A005940(1 + A156552(n) + A156552(k)).
A(n, n) = A003961(n).
A(n, 2*n) = A(2*n, n) = A329603(n).
A(n, 2) = A(2, n) = A297165(n).

A348040 Square array A(n,k) = the length of the common prefix in binary expansions of A156552(n) and A156552(k), read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 2, 1, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 1, 2, 1, 3, 1, 2, 1, 0, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 0, 1, 1, 2, 3, 3, 3, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 0, 0, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 0, 0, 1, 2, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 27 2021

Keywords

Examples

			The top left 17x17 corner of the array:
  n/k | 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
------+----------------------------------------------------
   1  | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   2  | 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
   3  | 0, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2,
   4  | 0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1,
   5  | 0, 1, 2, 1, 3, 2, 3, 1, 1, 3, 3, 2, 3, 3, 2, 1, 3,
   6  | 0, 1, 2, 1, 2, 3, 2, 1, 1, 2, 2, 3, 2, 2, 3, 1, 2,
   7  | 0, 1, 2, 1, 3, 2, 4, 1, 1, 3, 4, 2, 4, 4, 2, 1, 4,
   8  | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 3, 1,
   9  | 0, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1,
  10  | 0, 1, 2, 1, 3, 2, 3, 1, 1, 4, 3, 2, 3, 3, 2, 1, 3,
  11  | 0, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 5, 4, 2, 1, 5,
  12  | 0, 1, 2, 1, 2, 3, 2, 1, 1, 2, 2, 4, 2, 2, 3, 1, 2,
  13  | 0, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 6, 4, 2, 1, 6,
  14  | 0, 1, 2, 1, 3, 2, 4, 1, 1, 3, 4, 2, 4, 5, 2, 1, 4,
  15  | 0, 1, 2, 1, 2, 3, 2, 1, 1, 2, 2, 3, 2, 2, 4, 1, 2,
  16  | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1,
  17  | 0, 1, 2, 1, 3, 2, 4, 1, 1, 3, 5, 2, 6, 4, 2, 1, 7,
		

Crossrefs

Cf. A252464 (main diagonal).
Cf. also A347380, A347381.

Programs

  • PARI
    up_to = 105;
    Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y));
    A348040list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A348040sq(col,(a-(col-1))))); (v); };
    v348040 = A348040list(up_to);
    A348040(n) = v348040[n];

A347879 The nearest common ancestor of n and sigma(n) in the Doudna tree (A005940).

Original entry on oeis.org

1, 2, 2, 2, 3, 6, 2, 2, 2, 2, 3, 3, 7, 3, 6, 2, 2, 2, 5, 10, 2, 2, 3, 6, 2, 5, 2, 28, 3, 2, 2, 2, 3, 2, 6, 2, 19, 3, 7, 3, 5, 3, 11, 5, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 3, 3, 3, 31, 3, 5, 2, 5, 2, 17, 5, 3, 2, 2, 2, 37, 17, 2, 3, 6, 5, 5, 5, 4, 5, 5, 5, 2, 7, 3, 3, 3, 3, 5, 5, 2, 2, 3, 3, 2, 2, 7, 2, 13, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2021

Keywords

Comments

The fixed points of this sequence is given by the union of {2} and A336702.
The positions x such that a(x) = A252463(x) is given by the union of {1} and A347391.
The positions x such that a(x) = A252463(A252463(x)) is given by the union of {1} and A347392.

Crossrefs

Programs

Formula

a(n) = A348041(n, A000203(n)).

A356300 Square array read by antidiagonals. A(n,k) is the nearest common ancestor of n and k in the binary tree depicted in A253563.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 4, 7, 4, 3, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 03 2022

Keywords

Comments

Array is symmetric and is read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... .
Also the nearest common ancestor of n and k in the tree depicted in A253565 (the mirror image of the A253563-tree).

Examples

			The top left 21x21 corner of the array:
n/k  |  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21
-----+----------------------------------------------------------------------------
   1 |  1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
   2 |  1, 2, 2, 2, 2, 2, 2, 2, 2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
   3 |  1, 2, 3, 2, 3, 2, 3, 2, 3,  2,  3,  2,  3,  2,  3,  2,  3,  2,  3,  2,  3,
   4 |  1, 2, 2, 4, 2, 4, 2, 4, 2,  4,  2,  4,  2,  4,  2,  4,  2,  4,  2,  4,  2,
   5 |  1, 2, 3, 2, 5, 2, 5, 2, 3,  2,  5,  2,  5,  2,  3,  2,  5,  2,  5,  2,  3,
   6 |  1, 2, 2, 4, 2, 6, 2, 4, 2,  6,  2,  4,  2,  6,  2,  4,  2,  6,  2,  4,  2,
   7 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2,  7,  2,  7,  2,  3,  2,  7,  2,  7,  2,  3,
   8 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2,  8,  2,  4,  2,  8,  2,  4,  2,  8,  2,
   9 |  1, 2, 3, 2, 3, 2, 3, 2, 9,  2,  3,  2,  3,  2,  9,  2,  3,  2,  3,  2,  9,
  10 |  1, 2, 2, 4, 2, 6, 2, 4, 2, 10,  2,  4,  2, 10,  2,  4,  2,  6,  2,  4,  2,
  11 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 11,  2,  3,  2, 11,  2, 11,  2,  3,
  12 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2, 12,  2,  4,  2,  8,  2,  4,  2, 12,  2,
  13 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 13,  2,  3,  2, 13,  2, 13,  2,  3,
  14 |  1, 2, 2, 4, 2, 6, 2, 4, 2, 10,  2,  4,  2, 14,  2,  4,  2,  6,  2,  4,  2,
  15 |  1, 2, 3, 2, 3, 2, 3, 2, 9,  2,  3,  2,  3,  2, 15,  2,  3,  2,  3,  2, 15,
  16 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2,  8,  2,  4,  2, 16,  2,  4,  2,  8,  2,
  17 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 13,  2,  3,  2, 17,  2, 17,  2,  3,
  18 |  1, 2, 2, 4, 2, 6, 2, 4, 2,  6,  2,  4,  2,  6,  2,  4,  2, 18,  2,  4,  2,
  19 |  1, 2, 3, 2, 5, 2, 7, 2, 3,  2, 11,  2, 13,  2,  3,  2, 17,  2, 19,  2,  3,
  20 |  1, 2, 2, 4, 2, 4, 2, 8, 2,  4,  2, 12,  2,  4,  2,  8,  2,  4,  2, 20,  2,
  21 |  1, 2, 3, 2, 3, 2, 3, 2, 9,  2,  3,  2,  3,  2, 15,  2,  3,  2,  3,  2, 21,
.
A(3,6) = A(6,3) = 2 because the nearest common ancestor of 3 and 6 in the tree described in A253563 (and in A253565) is 2.
A(4,6) = A(6,4) = 4 because 6 occurs as a descendant of 4 in A253563-tree, thus their nearest common ancestor is 4 itself.
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A356300sq(x,y) = if(1==x||1==y,1, my(lista=List([]), i, k=x, stemvec, stemlen, h=y); while(k>1, listput(lista,k); k = A253553(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,h))>0, return(stemvec[i])); h = A253553(h)));
    A356300list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A356300sq(col,(a-(col-1))))); (v); };
    v356300 = A356300list(up_to);
    A356300(n) = v356300[n];

A348042 Square array A(n,k) = the nearest common ancestor of n, k and n*k in Doudna tree (A005940).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 2, 4, 3, 2, 3, 4, 2, 2, 1, 1, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 1, 1, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 27 2021

Keywords

Comments

Array is symmetric and is read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left 17x17 corner of the array:
  n/k |  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17
------+-------------------------------------------------------------
    1 |  1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,
    2 |  1, 2, 2, 2, 2, 2, 2, 2, 2,  2,  2,  2,  2,  2,  2,  2,  2,
    3 |  1, 2, 2, 2, 3, 2, 3, 2, 2,  3,  3,  2,  3,  3,  3,  2,  3,
    4 |  1, 2, 2, 4, 2, 2, 2, 4, 4,  2,  2,  2,  2,  2,  2,  4,  2,
    5 |  1, 2, 3, 2, 2, 3, 3, 2, 2,  2,  5,  3,  5,  3,  2,  2,  5,
    6 |  1, 2, 2, 2, 3, 2, 3, 2, 2,  3,  3,  2,  3,  3,  6,  2,  3,
    7 |  1, 2, 3, 2, 3, 3, 2, 2, 2,  3,  3,  3,  5,  2,  3,  2,  7,
    8 |  1, 2, 2, 4, 2, 2, 2, 8, 4,  2,  2,  2,  2,  2,  2,  8,  2,
    9 |  1, 2, 2, 4, 2, 2, 2, 4, 4,  2,  2,  2,  2,  2,  2,  4,  2,
   10 |  1, 2, 3, 2, 2, 3, 3, 2, 2,  2,  5,  3,  5,  3,  2,  2,  5,
   11 |  1, 2, 3, 2, 5, 3, 3, 2, 2,  5,  2,  3,  3,  3,  3,  2,  5,
   12 |  1, 2, 2, 2, 3, 2, 3, 2, 2,  3,  3,  2,  3,  3,  6,  2,  3,
   13 |  1, 2, 3, 2, 5, 3, 5, 2, 2,  5,  3,  3,  2,  5,  3,  2,  3,
   14 |  1, 2, 3, 2, 3, 3, 2, 2, 2,  3,  3,  3,  5,  2,  3,  2,  7,
   15 |  1, 2, 3, 2, 2, 6, 3, 2, 2,  2,  3,  6,  3,  3,  2,  2,  3,
   16 |  1, 2, 2, 4, 2, 2, 2, 8, 4,  2,  2,  2,  2,  2,  2, 16,  2,
   17 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5,  5,  3,  3,  7,  3,  2,  2,
		

Crossrefs

Cf. A005940, A156552, A348041, A348043, A348044 (main diagonal).

Programs

  • PARI
    \\ Needs also code from A348041:
    up_to = 105;
    A348042sq(row,col) = A348041sq(row*col,A348041sq(row,col));
    A348042list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A348042sq(col,(a-(col-1))))); (v); };
    v348042 = A348042list(up_to);
    A348042(n) = v348042[n];

Formula

A(n, k) = A(k, n).
A(n, k) = A348041(n*k, A348041(n, k)).
A(n, k) = A348041(n, A348043(k, n)) = A348041(k, A348043(n, k)).
For any two squares s=u^2 and t=v^2, A(s, t) is a square also.

A348043 Square array A(n,k) = the nearest common ancestor of n and n*k in Doudna tree (A005940).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 2, 4, 5, 1, 2, 3, 2, 5, 6, 1, 2, 3, 4, 3, 6, 7, 1, 2, 2, 2, 5, 2, 7, 8, 1, 2, 3, 2, 2, 6, 5, 8, 9, 1, 2, 3, 2, 3, 6, 7, 2, 9, 10, 1, 2, 2, 4, 3, 2, 3, 8, 4, 10, 11, 1, 2, 3, 4, 5, 3, 5, 2, 9, 3, 11, 12, 1, 2, 3, 2, 3, 6, 2, 2, 2, 10, 7, 12, 13, 1, 2, 2, 2, 2, 2, 7, 2, 4, 2, 11, 2, 13, 14
Offset: 1

Views

Author

Antti Karttunen, Sep 27 2021

Keywords

Comments

Array is read by falling antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Examples

			The top left 17x17 corner of the array:
  n/k |   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17
------+----------------------------------------------------------------------
    1 |   1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
    2 |   2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2,
    3 |   3,  3,  2,  3,  3,  2,  3,  3,  2,  3,  3,  2,  3,  3,  3,  3,  3,
    4 |   4,  4,  2,  4,  2,  2,  2,  4,  4,  2,  2,  2,  2,  2,  2,  4,  2,
    5 |   5,  5,  3,  5,  2,  3,  3,  5,  3,  2,  5,  3,  5,  3,  2,  5,  5,
    6 |   6,  6,  2,  6,  6,  2,  3,  6,  2,  6,  3,  2,  3,  3,  6,  6,  3,
    7 |   7,  7,  5,  7,  3,  5,  2,  7,  5,  3,  3,  5,  5,  2,  3,  7,  7,
    8 |   8,  8,  2,  8,  2,  2,  2,  8,  4,  2,  2,  2,  2,  2,  2,  8,  2,
    9 |   9,  9,  4,  9,  2,  4,  2,  9,  4,  2,  2,  4,  2,  2,  2,  9,  2,
   10 |  10, 10,  3, 10,  2,  3,  3, 10,  3,  2, 10,  3,  5,  3,  2, 10,  5,
   11 |  11, 11,  7, 11,  5,  7,  3, 11,  7,  5,  2,  7,  3,  3,  5, 11,  5,
   12 |  12, 12,  2, 12,  6,  2,  3, 12,  2,  6,  3,  2,  3,  3, 12, 12,  3,
   13 |  13, 13, 11, 13,  7, 11,  5, 13, 11,  7,  3, 11,  2,  5,  7, 13,  3,
   14 |  14, 14,  5, 14,  3,  5,  2, 14,  5,  3,  3,  5,  5,  2,  3, 14, 14,
   15 |  15, 15,  6, 15,  2,  6, 15, 15,  6,  2,  3,  6,  3, 15,  2, 15,  3,
   16 |  16, 16,  2, 16,  2,  2,  2, 16,  4,  2,  2,  2,  2,  2,  2, 16,  2,
   17 |  17, 17, 13, 17, 11, 13,  7, 17, 13, 11,  5, 13,  3,  7, 11, 17,  2,
		

Crossrefs

Cf. A005940, A156552, A348041, A348042, A348044 (main diagonal).
Cf. A000027 (all columns k that are powers of two: k = 2^e, for e >= 0).

Programs

  • PARI
    \\ Needs also code from A348041:
    A348043sq(x,y) = A348041sq(x,x*y);
    A348043list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A348043sq(col,(a-(col-1))))); (v); };
    v348043 = A348043list(up_to);
    A348043(n) = v348043[n];

Formula

A(n, k) = A348041(n, n*k).

A348044 The nearest common ancestor of n and n^2 in the Doudna tree (A005940).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 2, 8, 4, 2, 2, 2, 2, 2, 2, 16, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 8, 2, 2, 2, 2, 32, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 64, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 16, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 27 2021

Keywords

Crossrefs

Main diagonal of A348042 and A348043.
Cf. A102750 (the positions of 2's).

Programs

Formula

a(n) = A348041(n, n^2) = A348042(n, n) = A348043(n, n).

A356156 The nearest common ancestor of n and gcd(n, sigma(n)) in the Doudna tree (A005940).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 3, 1, 2, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 1, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 3, 2, 1, 2, 5, 2, 1, 2, 5, 12, 1, 1, 3, 1, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2022

Keywords

Crossrefs

Cf. A000203, A007691 (fixed points), A009194, A348040, A348041.

Programs

  • PARI
    Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
    Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y));
    A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y)));
    A356156(n) = A348041sq(n,gcd(n, sigma(n)));

Formula

a(n) = A348041(n, A009194(n)) = A348041(n, gcd(n, A000203(n))).

A356157 The nearest common ancestor of sigma(n) and gcd(n, sigma(n)) in the Doudna tree (A005940).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 6, 1, 2, 1, 28, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 6, 1, 2, 3, 2, 1, 2, 1, 1, 2, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 28, 1, 2, 3, 2, 1, 2, 7, 2, 1, 2, 3, 3, 1, 1, 3, 1, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2022

Keywords

Crossrefs

Cf. A000203, A009194, A336702 (fixed points), A348040, A348041.
Cf. also A347879, A356156, A356307.

Programs

  • PARI
    Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
    Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y));
    A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y)));
    A356157(n) = A348041sq(sigma(n),gcd(n, sigma(n)));
Showing 1-10 of 11 results. Next