A348729 Decimal expansion of the positive root of Shanks's simplest cubic associated with the prime p = 163.
1, 2, 1, 5, 8, 2, 4, 6, 6, 6, 8, 7, 1, 2, 1, 3, 5, 3, 8, 2, 6, 0, 0, 3, 7, 1, 2, 4, 7, 0, 0, 0, 4, 2, 9, 8, 4, 5, 2, 4, 6, 5, 8, 4, 8, 0, 4, 7, 0, 7, 4, 8, 0, 5, 6, 7, 1, 2, 2, 8, 4, 2, 9, 4, 5, 7, 3, 5, 6, 6, 6, 5, 2, 8, 4, 6, 4, 9, 3, 4, 5, 1, 0, 4, 8, 7, 7, 2, 2, 6, 8, 2, 6, 5, 9, 1, 3, 2, 5, 3, 3, 4, 4
Offset: 2
Examples
12.15824666871213538260037124700042984524658480470748 ...
Links
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152.
- Index entries for algebraic numbers, degree 3.
Programs
-
Maple
R := convert([seq(mod(n^3, 163), n = 1..162)], set): P := k -> sqrt( mul(sin((1/163)*k*r*Pi), r in R) ): evalf(sqrt(P(3)/P(1)), 105);
-
Mathematica
rs = Union@Mod[Range[1, 162]^3, 163]; f[k_] := Sqrt[Product[Sin[k*r*Pi/163], {r, rs}]]; RealDigits[Sqrt[f[3]/f[1]], 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
-
PARI
polrootsreal(x^3 - 11*x^2 - 14*x - 1)[3] \\ Charles R Greathouse IV, Feb 04 2025
Formula
Let R = {1, 5, 6, 8, ..., 155, 157, 158, 162} denote the multiplicative subgroup of nonzero cubic residues in the finite field Z_163, with cosets 2*R = {2, 7, 9, 10, ..., 153, 154, 156, 161} and 3*R = {3, 4, 11, 14, ..., 149, 152, 159, 160}.
Define P(k) = Product_{r in R, r <= (163-1)/2} sin(k*r*Pi/163). The three roots of the cubic x^3 - 11*x^2 - 14*x - 1 are
r_0 = sqrt(P(3)/P(1)) = 12.1582466687....
r_1 = -sqrt(P(1)/P(2)) = -0.0759979672....
r_2 = -sqrt(P(2)/P(3)) = -1.0822487014....
Comments