A348720 Decimal expansion of 4*cos(2*Pi/13)*cos(3*Pi/13).
2, 6, 5, 1, 0, 9, 3, 4, 0, 8, 9, 3, 7, 1, 7, 5, 3, 0, 6, 2, 5, 3, 2, 4, 0, 3, 3, 7, 7, 8, 7, 6, 1, 5, 4, 0, 3, 1, 3, 2, 4, 4, 1, 0, 7, 5, 7, 0, 5, 5, 9, 6, 6, 8, 4, 0, 1, 8, 7, 6, 7, 7, 9, 0, 3, 2, 7, 6, 0, 4, 2, 1, 7, 4, 7, 5, 0, 8, 4, 2, 5, 0, 5, 6, 2, 1, 0, 8, 9, 6, 3, 9, 2, 4, 0, 9, 8, 3, 3, 9
Offset: 1
Examples
2.651093408937175306253240337787615403132441075705596684018767...
Links
- T. W. Cusick and Lowell Schoenfeld, A table of fundamental pairs of units in totally real cubic fields, Math. Comp. 48 (1987), 147-158
- D. Shanks, The simplest cubic fields, Math. Comp., 28 (1974), 1137-1152.
- Index entries for algebraic numbers, degree 3
Programs
-
Maple
evalf(4*cos(2*Pi/13)*cos(3*Pi/13), 100);
-
Mathematica
RealDigits[4*Cos[2*Pi/13]*Cos[3*Pi/13], 10, 100][[1]] (* Amiram Eldar, Nov 08 2021 *)
-
PARI
polrootsreal(x^3 - x^2 - 4*x - 1)[3] \\ Charles R Greathouse IV, Oct 30 2023
Formula
r_0 = 2*(cos(Pi/13) + cos(5*Pi/13)).
r_0 = sin(4*Pi/13)*sin(6*Pi/13) / (sin(2*Pi/13)*sin(3*Pi/13)).
r_0 = Product_{n >= 0} (13*n+4)*(13*n+6)*(13*n+7)*(13*n+9)/( (13*n+2)*(13*n+3)*(13*n+10)*(13*n+11) ).
r_1 = 2*(cos(3*Pi/13) - cos(2*Pi/13)).
r_1 = - sin(Pi/13)*sin(5*Pi/13)/(sin(4*Pi/13)*sin(6*Pi/13)).
r_1 = - Product_{n >= 0} (13*n+1)*(13*n+5)*(13*n+8)*(13*n+12)/( (13*n+4)*(13*n+6)*(13*n+7)*(13*n+9) ).
r_2 = 2*(cos(7*Pi/13) - cos(4*Pi/13)).
r_2 = - sin(2*Pi/13)*sin(3*Pi/13)/(sin(Pi/13)*sin(5*Pi/13)).
r_2 = - Product_{n >= 0} (13*n+2)*(13*n+3)*(13*n+10)*(13*n+11)/( (13*n+1)*(13*n+5)*(13*n+8)*(13*n+12) ).
Equivalently, let z = exp(2*Pi*i/13). Then
r_0 = abs( (1 - z^4)*(1 - z^6)/((1 - z^2)*(1 - z^3)) );
r_1 = - abs( (1 - z)*(1 - z^5)/((1 - z^4)*(1 - z^6)) );
r_2 = - abs( (1 - z^2)*(1 - z^3)/((1 - z)*(1 - z^5)) ).
Note: C = {1, 5, 8, 12} is the subgroup of nonzero cubic residues in the finite field Z_13 with cosets 2*C = {2, 3, 10, 11} and 4*C = {4, 6, 7, 9}.
Equals (-1)^(1/13) + (-1)^(5/13) - (-1)^(8/13) - (-1)^(12/13). - Peter Luschny, Nov 08 2021
Comments