A346626
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 2, 8, 44, 280, 1936, 14128, 107088, 834912, 6652608, 53934080, 443467136, 3689334272, 30997608960, 262651640064, 2241857334528, 19257951946240, 166362924583936, 1444351689281536, 12595885932259328, 110287974501355520, 969178569410404352, 8544982917273509888, 75565732555028701184
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 23; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 - x)^(3 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 23}]
A349310
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^4) / (1 - x).
Original entry on oeis.org
1, 2, 10, 74, 642, 6082, 60970, 635818, 6826690, 74958914, 837833482, 9500939978, 109037364930, 1264049402754, 14780619799722, 174121322204074, 2064572904600706, 24620095821589378, 295087003429677322, 3552841638851183690, 42950428996378731010
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = (1 + x A[x]^4)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 3 k, 4 k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 20}]
A349311
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^5) / (1 - x).
Original entry on oeis.org
1, 2, 12, 112, 1232, 14832, 189184, 2512064, 34358784, 480745984, 6848734464, 99003237376, 1448575666176, 21411827808256, 319255531155456, 4796005997940736, 72520546008219648, 1102912584949792768, 16859182461720526848, 258886644574700699648
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^5)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 4 k, 5 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]
A349312
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^6) / (1 - x).
Original entry on oeis.org
1, 2, 14, 158, 2106, 30762, 476406, 7683926, 127692530, 2171184146, 37592376734, 660522703886, 11747865153962, 211093333172282, 3826315983647366, 69880933123237958, 1284661783610775010, 23753502514840942882, 441458929706855144494, 8242097867816771820926
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^6)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 5 k, 6 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
A366401
G.f. A(x) satisfies A(x) = (1 + x * A(x)^(7/2)) / (1 - x).
Original entry on oeis.org
1, 2, 9, 58, 436, 3572, 30935, 278532, 2581043, 24453404, 235790159, 2306367444, 22829030276, 228240387070, 2301498462245, 23379656027868, 239038022347243, 2457891085704180, 25400777844198274, 263685720722690420, 2748421883496133866
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k/2, n-k)*binomial(7*k/2, k)/(5*k/2+1));
A366363
G.f. satisfies A(x) = (1 + x/A(x))/(1 - x).
Original entry on oeis.org
1, 2, 0, 4, -8, 32, -112, 432, -1696, 6848, -28160, 117632, -497664, 2128128, -9183488, 39940864, -174897664, 770452480, -3411959808, 15181264896, -67833868288, 304256253952, -1369404661760, 6182858317824, -27995941060608, 127100310290432, -578433619525632
Offset: 0
-
A366363[n_]:=(-1)^(n-1)Sum[Binomial[2k-1,k]Binomial[k-1,n-k]/(2k-1),{k,0,n}];
Array[A366363,30,0] (* Paolo Xausa, Oct 20 2023 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(k-1, n-k)/(2*k-1));
A366364
G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x).
Original entry on oeis.org
1, 2, -2, 14, -70, 426, -2714, 18118, -124814, 881042, -6339058, 46318334, -342769750, 2563781690, -19350683018, 147197511222, -1127334112542, 8685458120226, -67270210217186, 523472089991662, -4090668558473318, 32088204418069450, -252576222775705466
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*k-1, n-k)/(3*k-1));
A349314
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^8) / (1 - x).
Original entry on oeis.org
1, 2, 18, 274, 4930, 97346, 2039570, 44524818, 1001773058, 23065953794, 540886665618, 12872727013522, 310135678438978, 7549240857128258, 185381380643501970, 4586875745951650706, 114244031335228433922, 2862001783406012428802, 72067481493990612275474
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = (1 + x A[x]^8)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 7 k, 8 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]
A366365
G.f. satisfies A(x) = (1 + x/A(x)^3)/(1 - x).
Original entry on oeis.org
1, 2, -4, 32, -240, 2064, -18816, 179264, -1762816, 17758976, -182342400, 1901196288, -20075427840, 214246524928, -2307200135168, 25039992254464, -273603550461952, 3007387399258112, -33230774508716032, 368915340555517952, -4112806343370539008
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(3*k-1, n-k)/(4*k-1));
A366366
G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).
Original entry on oeis.org
1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338, -15088643098754942, 215396586102923138, -3091050571516120582, 44566089825496186170
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(4*k-1, n-k)/(5*k-1));
Showing 1-10 of 10 results.
Comments