A346626
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 2, 8, 44, 280, 1936, 14128, 107088, 834912, 6652608, 53934080, 443467136, 3689334272, 30997608960, 262651640064, 2241857334528, 19257951946240, 166362924583936, 1444351689281536, 12595885932259328, 110287974501355520, 969178569410404352, 8544982917273509888, 75565732555028701184
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 23; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 - x)^(3 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 23}]
A349311
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^5) / (1 - x).
Original entry on oeis.org
1, 2, 12, 112, 1232, 14832, 189184, 2512064, 34358784, 480745984, 6848734464, 99003237376, 1448575666176, 21411827808256, 319255531155456, 4796005997940736, 72520546008219648, 1102912584949792768, 16859182461720526848, 258886644574700699648
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^5)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 4 k, 5 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]
A349312
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^6) / (1 - x).
Original entry on oeis.org
1, 2, 14, 158, 2106, 30762, 476406, 7683926, 127692530, 2171184146, 37592376734, 660522703886, 11747865153962, 211093333172282, 3826315983647366, 69880933123237958, 1284661783610775010, 23753502514840942882, 441458929706855144494, 8242097867816771820926
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^6)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 5 k, 6 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
A364407
G.f. satisfies A(x) = 1 + x*(1 + 1/A(x)^3).
Original entry on oeis.org
1, 2, -6, 42, -350, 3234, -31878, 328426, -3494142, 38093442, -423344966, 4778162922, -54621614814, 631114404258, -7358619459654, 86472788963370, -1023093071862526, 12177054520248834, -145700860758056838, 1751559565664348842, -21145576694586256734
Offset: 0
-
A364407 := proc(n)
if n = 0 then
1;
else
(-1)^(n-1)*add( binomial(n,k) * binomial(n+3*k-2,n-1),k=0..n)/n ;
end if;
end proc:
seq(A364407(n),n=0..70); # R. J. Mathar, Jul 25 2023
-
nmax = 20; A[_] = 1;
Do[A[x_] = 1 + x*(1 + 1/A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = if(n==0, 1, (-1)^(n-1)*sum(k=0, n, binomial(n, k)*binomial(n+3*k-2, n-1))/n);
A349313
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^7) / (1 - x).
Original entry on oeis.org
1, 2, 16, 212, 3320, 57024, 1038928, 19718512, 385668448, 7718866880, 157326086656, 3254310606208, 68142850580480, 1441588339943168, 30765576147680000, 661561298256228096, 14319744815795062272, 311756656998135770112, 6822215641015820419072
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = (1 + x A[x]^7)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 6 k, 7 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 18}]
A366363
G.f. satisfies A(x) = (1 + x/A(x))/(1 - x).
Original entry on oeis.org
1, 2, 0, 4, -8, 32, -112, 432, -1696, 6848, -28160, 117632, -497664, 2128128, -9183488, 39940864, -174897664, 770452480, -3411959808, 15181264896, -67833868288, 304256253952, -1369404661760, 6182858317824, -27995941060608, 127100310290432, -578433619525632
Offset: 0
-
A366363[n_]:=(-1)^(n-1)Sum[Binomial[2k-1,k]Binomial[k-1,n-k]/(2k-1),{k,0,n}];
Array[A366363,30,0] (* Paolo Xausa, Oct 20 2023 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(k-1, n-k)/(2*k-1));
A366364
G.f. satisfies A(x) = (1 + x/A(x)^2)/(1 - x).
Original entry on oeis.org
1, 2, -2, 14, -70, 426, -2714, 18118, -124814, 881042, -6339058, 46318334, -342769750, 2563781690, -19350683018, 147197511222, -1127334112542, 8685458120226, -67270210217186, 523472089991662, -4090668558473318, 32088204418069450, -252576222775705466
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*k-1, n-k)/(3*k-1));
A213336
G.f. satisfies A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 8, 64, 568, 5440, 54888, 574848, 6190872, 68132224, 762874568, 8663106496, 99536424952, 1155012037824, 13516570396968, 159340702404352, 1890451582396632, 22555522916988672, 270466907608087944, 3257754635421506368, 39397587357527547320
Offset: 0
G.f.: A(x) = 1 + x + 8*x^2 + 64*x^3 + 568*x^4 + 5440*x^5 + 54888*x^6 +...
G.f.: A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4 is g.f. of A002293:
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
-
/* G.f. A(x) = G(x/(1-x)^4) where G(x) = 1 + x*G(x)^4: */
{a(n)=local(A, G=1+x); for(i=1, n, G=1+x*G^4+x*O(x^n)); A=subst(G, x, x/(1-x+x*O(x^n))^4); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
/* G.f. A(x) = F(x*A(x)^4) where F(x) = 1 + x/F(-x)^4: */
{a(n)=local(F=1+x+x*O(x^n),A=1); for(i=1, n+1, F=1+x/subst(F^4, x, -x+x*O(x^n))); A=(serreverse(x/F^4)/x)^(1/4);polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A349314
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^8) / (1 - x).
Original entry on oeis.org
1, 2, 18, 274, 4930, 97346, 2039570, 44524818, 1001773058, 23065953794, 540886665618, 12872727013522, 310135678438978, 7549240857128258, 185381380643501970, 4586875745951650706, 114244031335228433922, 2862001783406012428802, 72067481493990612275474
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = (1 + x A[x]^8)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 7 k, 8 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]
A366365
G.f. satisfies A(x) = (1 + x/A(x)^3)/(1 - x).
Original entry on oeis.org
1, 2, -4, 32, -240, 2064, -18816, 179264, -1762816, 17758976, -182342400, 1901196288, -20075427840, 214246524928, -2307200135168, 25039992254464, -273603550461952, 3007387399258112, -33230774508716032, 368915340555517952, -4112806343370539008
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(3*k-1, n-k)/(4*k-1));
Showing 1-10 of 16 results.
Comments