cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A349524 a(n) = Sum_{k=0..n} (2*k+1)^(k-1) * Stirling2(n,k).

Original entry on oeis.org

1, 1, 6, 65, 1059, 23232, 642859, 21507733, 844701160, 38108248719, 1942394699283, 110401966739110, 6923805346540685, 474957822716470901, 35377953843680999326, 2843665890900123673997, 245340865605247369255751, 22614510471168438300336440, 2217985444621941684970200607
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 20 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
         (2*m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..24);  # Alois P. Heinz, Jul 29 2022
  • Mathematica
    Table[Sum[(2*k+1)^(k-1)*StirlingS2[n, k], {k, 0, n}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[Sqrt[-LambertW[2*(-E^x + 1)]/(2*(E^x - 1))], {x, 0, nmax}], x] * Range[0, nmax]!
  • PARI
    a(n) = sum(k=0, n, (2*k+1)^(k-1)*stirling(n, k, 2)); \\ Seiichi Manyama, Nov 20 2021
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=0, N, (2*k+1)^(k-1)*x^k/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Nov 20 2021

Formula

E.g.f.: sqrt(-LambertW(2*(-exp(x) + 1)) / (2*(exp(x) - 1))).
E.g.f.: exp(-LambertW(2 - 2*exp(x))/2).
a(n) ~ c * d^n * n! / n^(3/2), where d = 1/log(1 + 1/(2*exp(1))) and c = sqrt(exp(1) * (1 + 2*exp(1)) * log(1 + 1/(2*exp(1))) / (2*Pi))/2 = 0.3428481589262346912499652905097648170872882109000404115070292580887155335...
a(n) ~ sqrt(1 + 2*exp(1)) * n^(n-1) / (2*exp(n - 1/2) * log(1 + 1/(2*exp(1)))^(n - 1/2)).
E.g.f. satisfies: log(A(x)) = (exp(x) - 1) * A(x)^2.
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k/Product_{j=1..k} (1 - j*x). - Seiichi Manyama, Nov 20 2021

A349505 E.g.f. satisfies: A(x) = (1 + x)^(A(x)^3).

Original entry on oeis.org

1, 1, 6, 81, 1668, 46740, 1659102, 71386602, 3611376360, 210083758704, 13817649943440, 1013979735381888, 82134894774767832, 7279520816638839600, 700730732176038359208, 72803537907677356262760, 8120227815636769492383168
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(-LambertW[-3*Log[1 + x]]/(3*Log[1 + x]))^(1/3), {x, 0, nmax}], x]*Range[0, nmax]! (* Vaclav Kotesovec, Nov 20 2021 *)
  • PARI
    a(n) = sum(k=0, n, (3*k+1)^(k-1)*stirling(n, k, 1));
    
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(sum(k=0, N, (3*k+1)^(k-1)*log(1+x)^k/k!)))

Formula

a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * Stirling1(n,k).
E.g.f. A(x) = Sum_{k>=0} (3*k+1)^(k-1) * (log(1+x))^k / k!.
From Vaclav Kotesovec, Nov 20 2021: (Start)
E.g.f.: (-LambertW(-3*log(1 + x)) / (3*log(1 + x)))^(1/3).
a(n) ~ n^(n-1) / (sqrt(3) * (exp(exp(-1)/3) - 1)^(n - 1/2) * exp(n + exp(-1)/6 - 5/6)). (End)

A264407 E.g.f. satisfies: A(x) = 1/(1-x)^(A(x)^2).

Original entry on oeis.org

1, 1, 6, 66, 1084, 23920, 665388, 22374884, 883177328, 40043323728, 2051202965280, 117166763184768, 7384596609153696, 509084508866799840, 38108295339435463296, 3078340850588419228800, 266906341797637061659392, 24724454378396015985551616, 2436960508983873399401081856, 254658073346711773211982974976, 28122779871625104764662272952320
Offset: 0

Views

Author

Paul D. Hanna, Nov 17 2015

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 66*x^3/3! + 1084*x^4/4! + 23920*x^5/5! + 665388*x^6/6! + 22374884*x^7/7! + 883177328*x^8/8! +...
where A(x) = 1/(1-x)^(A(x)^2).
From a LambertW identity,
A(x) = 1 - log(1-x) + 5*log(1-x)^2/2! - 7^2*log(1-x)^3/3! + 9^3*log(1-x)^4/4! - 11^4*log(1-x)^5/5! + 13^5*log(1-x)^6/6! +...
Also,
A(x) = 1 + x*A(x)^2 + x^2*A(x)^2*(A(x)^2+1)/2! + x^3*A(x)^2*(A(x)^2+1)*(A(x)^2+2)/3! + x^4*A(x)^2*(A(x)^2+1)*(A(x)^2+2)*(A(x)^2+3)/4! +...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, k]] * (2*k+1)^(k-1), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 18 2015 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A = sum(m=0, n, x^m/m! * prod(k=0, m-1, A^2 + k) +x*O(x^n)) ); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    a(n) = sum(k=0,n,abs(stirling(n, k, 1))*(2*k+1)^(k-1));
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. also satisfies:
(1) A(x) = sqrt( LambertW(2*log(1-x)) / (2*log(1-x)) ).
(2) A(x) = Sum_{n>=0} (2*n+1)^(n-1) * (-log(1-x))^n / n!.
(3) A(x) = Sum_{n>=0} x^n/n! * Product_{k=0..n-1} (A(x)^2 + k).
(4) A(x) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} |Stirling1(n, k)| * A(x)^(2*k).
a(n) = Sum_{k=0..n} |Stirling1(n, k)| * (2*k+1)^(k-1).
a(n) ~ exp(1 + (exp(-1)/2 - 1)*n) * n^(n-1) / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n-1/2)). - Vaclav Kotesovec, Nov 18 2015

A357337 E.g.f. satisfies A(x) = log(1 + x) * exp(2 * A(x)).

Original entry on oeis.org

0, 1, 3, 26, 334, 5964, 135228, 3729872, 121172560, 4532603904, 191869653120, 9067948437888, 473297792213376, 27039987154142208, 1678363256057198592, 112467293224249912320, 8092242817059530284032, 622253112192770288799744
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[_] = 0;
    Do[A[x_] = Log[1 + x]*Exp[2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*log(1+x))/2)))
    
  • PARI
    a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 1));

Formula

E.g.f.: -LambertW(-2 * log(1 + x))/2.
a(n) = Sum_{k=1..n} (2 * k)^(k-1) * Stirling1(n,k).
a(n) ~ n^(n-1) / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n - 1/2) * exp(n + exp(-1)/4 - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( exp(x * exp(-2*x)) - 1 ). - Seiichi Manyama, Sep 10 2024

A362794 E.g.f. satisfies A(x) = (1+x)^(A(x)^x).

Original entry on oeis.org

1, 1, 0, 6, 0, 170, -120, 12446, -35336, 1832400, -12172320, 469680552, -5524990416, 189586178184, -3321122831208, 111608536026360, -2599887499382400, 90253048158627072, -2595580675897337856, 95720854442948910720, -3237436187047116892800
Offset: 0

Views

Author

Seiichi Manyama, May 04 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^exp(-lambertw(-x*log(1+x)))))

Formula

E.g.f.: exp( -LambertW(-x * log(1+x)) / x ) = (1+x)^exp( -LambertW(-x * log(1+x)) ).
E.g.f.: Sum_{k>=0} (k*x + 1)^(k-1) * (log(1+x))^k / k!.
Showing 1-5 of 5 results.