A349594 Number of 2 X n mazes that can be navigated from the top left corner to the bottom right corner.
1, 7, 40, 216, 1144, 6016, 31552, 165312, 865792, 4533760, 23739904, 124305408, 650874880, 3408031744, 17844699136, 93436084224, 489237741568, 2561682178048, 13413142233088, 70232124948480, 367740181282816, 1925512588951552, 10082114810675200, 52790638512439296
Offset: 1
Examples
For n = 2 the a(2) = 7 solutions are as follows: +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ | | | | | | | | | | | | | | | | + + + + + + + +---+ + + + +---+ + +---+ + + +---+ | | | | | | | | | | | | | | | | +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+ +---+---+
Links
- Index entries for linear recurrences with constant coefficients, signature (8,-16,8).
Programs
-
Haskell
import Data.List m = [[2, 0, 2], [0, 2, 2], [1, 1, 4]] (.*.) :: Num a => [[a]] -> [[a]] -> [[a]] (.*.) a b = [[ sum $ zipWith (*) ar bc | bc <- (transpose b)] | ar <- a ] (.^.) :: Num a => [[a]] -> Integer -> [[a]] m .^. 0 = [ [ if i == j then 1 else 0 | i <- [1 .. n] ] | j <- [1 .. n] ] where n = length m m .^. n | even n = let m' = m .^. (n `div` 2) in m' .*. m' | otherwise = m .*. (m .^. (n - 1)) a349594 n = (z !! 0 !! 1) + (z !! 0 !! 2) + (z !! 2 !! 1) + (z !! 2 !! 2) where z = m .^. (n - 1)
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <8|-16|8>>^n. <<0, 1, 7>>)[1, 1]: seq(a(n), n=1..24); # Alois P. Heinz, Dec 09 2021
-
Mathematica
LinearRecurrence[{8, -16, 8}, {1, 7, 40}, 24] (* Jean-François Alcover, Jan 29 2025 *)
-
PARI
Vec((1 - x)/((1 - 2*x)*(1 - 6*x + 4*x^2)) + O(x^30)) \\ Andrew Howroyd, Nov 22 2021
Formula
G.f.: (1 - x)/((1 - 2*x)*(1 - 6*x + 4*x^2)). - Andrew Howroyd, Nov 22 2021
a(n) = ((5-3*sqrt(5))*(3-sqrt(5))^n + (5+3*sqrt(5))*(3+sqrt(5))^n - 10*2^n) / 40. - Eugene Nonko, Nov 07 2024
Extensions
Terms a(18) and beyond from Andrew Howroyd, Nov 22 2021
Comments