cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340101 Number of factorizations of 2n + 1 into odd factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 4, 1, 2, 2, 1, 2, 2, 1, 1, 4, 2, 1, 2, 1, 1, 4, 2, 1, 5, 1, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 5, 1, 1, 2, 1, 2, 4, 2, 2, 2, 3, 1, 2, 1, 2, 7, 1, 1, 2, 2, 2, 4, 1, 1, 4, 2, 1, 2, 2, 1, 5, 1, 2, 4, 1, 4, 2, 1, 1, 2, 2, 2, 7, 1, 1, 5, 1, 1, 2, 2, 2, 4, 2
Offset: 0

Views

Author

Gus Wiseman, Dec 28 2020

Keywords

Examples

			The factorizations for 2n + 1 = 27, 45, 135, 225, 315, 405, 1155:
  27      45      135       225       315       405         1155
  3*9     5*9     3*45      3*75      5*63      5*81        15*77
  3*3*3   3*15    5*27      5*45      7*45      9*45        21*55
          3*3*5   9*15      9*25      9*35      15*27       33*35
                  3*5*9     15*15     15*21     3*135       3*385
                  3*3*15    5*5*9     3*105     5*9*9       5*231
                  3*3*3*5   3*3*25    5*7*9     3*3*45      7*165
                            3*5*15    3*3*35    3*5*27      11*105
                            3*3*5*5   3*5*21    3*9*15      3*5*77
                                      3*7*15    3*3*5*9     3*7*55
                                      3*3*5*7   3*3*3*15    5*7*33
                                                3*3*3*3*5   3*11*35
                                                            5*11*21
                                                            7*11*15
                                                            3*5*7*11
		

Crossrefs

The version for partitions is A160786, ranked by A300272.
The even version is A340785.
The odd-length case is A340102.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A316439 counts factorizations by product and length.
Odd bisection of A001055, and also of A349907.

Programs

  • Maple
    g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> g(2*n+1$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Times@@#]&]],{n,1,100,2}]
  • PARI
    A001055(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m), s += A001055(n/d, d))); (s)); \\ After code in A001055
    A340101(n) = A001055(n+n+1); \\ Antti Karttunen, Dec 13 2021

Formula

a(n) = A001055(2n+1).
a(n) = A349907(2n+1). - Antti Karttunen, Dec 13 2021

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 13 2021

A349906 Number of factorizations of n into even factors > 1 (a(1) = 1 by convention).

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 3, 0, 1, 0, 11, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 12, 0, 1, 0, 3, 0, 1, 0, 4, 0
Offset: 1

Views

Author

Antti Karttunen, Dec 13 2021

Keywords

Crossrefs

Cf. A001055, A340785 (even bisection), A349907.

Programs

  • PARI
    A349906(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&!(d%2), s += A349906(n/d, d))); (s));

A352063 Number of ordered factorizations of 2*n + 1 into odd factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 4, 1, 1, 3, 3, 1, 3, 1, 1, 8, 1, 2, 3, 1, 3, 3, 1, 1, 8, 3, 1, 3, 1, 1, 8, 3, 1, 8, 1, 3, 3, 1, 3, 3, 3, 1, 8, 1, 1, 13, 1, 1, 3, 1, 3, 8, 3, 2, 3, 4, 1, 3, 1, 3, 20, 1, 1, 3, 3, 3, 8, 1, 1, 8, 3, 1, 3, 3, 1, 13, 1, 2, 8, 1, 8, 3, 1, 1, 3, 3, 3, 20, 1, 1, 13, 1, 1, 3, 3, 3, 8, 3, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2022

Keywords

Comments

Also number of perfect partitions of 2*n.

Crossrefs

Programs

Formula

a(n) = A002033(2*n) = A074206(2*n+1).
a(n) = A378222(2*n+1) = A074206(A064216(1+n)). - Antti Karttunen, Nov 24 2024

Extensions

More terms from Antti Karttunen, Nov 24 2024
Showing 1-3 of 3 results.