cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A339890 Number of odd-length factorizations of n into factors > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 6, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 5, 1, 2, 1, 2, 1, 2, 1, 8, 1, 1, 2, 2, 1, 2, 1, 6, 2, 1, 1, 5, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2020

Keywords

Examples

			The a(n) factorizations for n = 24, 48, 60, 72, 96, 120:
  24      48          60       72          96          120
  2*2*6   2*3*8       2*5*6    2*4*9       2*6*8       3*5*8
  2*3*4   2*4*6       3*4*5    2*6*6       3*4*8       4*5*6
          3*4*4       2*2*15   3*3*8       4*4*6       2*2*30
          2*2*12      2*3*10   3*4*6       2*2*24      2*3*20
          2*2*2*2*3            2*2*18      2*3*16      2*4*15
                               2*3*12      2*4*12      2*5*12
                               2*2*2*3*3   2*2*2*2*6   2*6*10
                                           2*2*2*3*4   3*4*10
                                                       2*2*2*3*5
		

Crossrefs

The case of set partitions (or n squarefree) is A024429.
The case of partitions (or prime powers) is A027193.
The ordered version is A174726 (even: A174725).
The remaining (even-length) factorizations are counted by A339846.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A316439 counts factorizations by product and length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Maple
    g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> `if`(n<2, 0, g(n$2, 1)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ@Length[#]&]],{n,100}]

Formula

a(n) + A339846(n) = A001055(n).

A087897 Number of partitions of n into odd parts greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, 13, 15, 18, 20, 23, 27, 30, 34, 40, 44, 50, 58, 64, 73, 83, 92, 104, 118, 131, 147, 166, 184, 206, 232, 256, 286, 320, 354, 394, 439, 485, 538, 598, 660, 730, 809, 891, 984, 1088, 1196, 1318, 1454, 1596, 1756
Offset: 0

Views

Author

N. J. A. Sloane, Dec 04 2003

Keywords

Comments

Also number of partitions of n into distinct parts which are not powers of 2.
Also number of partitions of n into distinct parts such that the two largest parts differ by 1.
Also number of partitions of n such that the largest part occurs an odd number of times that is at least 3 and every other part occurs an even number of times. Example: a(10) = 2 because we have [2,2,2,1,1,1,1] and [2,2,2,2,2]. - Emeric Deutsch, Mar 30 2006
Also difference between number of partitions of 1+n into distinct parts and number of partitions of n into distinct parts. - Philippe LALLOUET, May 08 2007
In the Berndt reference replace {a -> -x, q -> x} in equation (3.1) to get f(x). G.f. is 1 - x * (1 - f(x)).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of symmetric unimodal compositions of n+3 where the maximal part appears three times. - Joerg Arndt, Jun 11 2013
Let c(n) = number of palindromic partitions of n whose greatest part has multiplicity 3; then c(n) = a(n-3) for n>=3. - Clark Kimberling, Mar 05 2014
From Gus Wiseman, Aug 22 2021: (Start)
Also the number of integer partitions of n - 1 whose parts cover an interval of positive integers starting with 2. These partitions are ranked by A339886. For example, the a(6) = 1 through a(16) = 5 partitions are:
32 222 322 332 432 3322 3332 4332 4432 5432 43332
2222 3222 22222 4322 33222 33322 33332 44322
32222 222222 43222 43322 333222
322222 332222 432222
2222222 3222222
(End)

Examples

			1 + x^3 + x^5 + x^6 + x^7 + x^8 + 2*x^9 + 2*x^10 + 2*x^11 + 3*x^12 + 3*x^13 + ...
q + q^73 + q^121 + q^145 + q^169 + q^193 + 2*q^217 + 2*q^241 + 2*q^265 + ...
a(10)=2 because we have [7,3] and [5,5].
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(22)=13 symmetric unimodal compositions of 22+3=25 where the maximal part appears three times:
01:  [ 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 2 3 3 3 2 1 1 1 1 1 1 ]
03:  [ 1 1 1 1 1 5 5 5 1 1 1 1 1 ]
04:  [ 1 1 1 1 2 2 3 3 3 2 2 1 1 1 1 ]
05:  [ 1 1 1 2 5 5 5 2 1 1 1 ]
06:  [ 1 1 2 2 2 3 3 3 2 2 2 1 1 ]
07:  [ 1 1 3 5 5 5 3 1 1 ]
08:  [ 1 1 7 7 7 1 1 ]
09:  [ 1 2 2 5 5 5 2 2 1 ]
10:  [ 1 4 5 5 5 4 1 ]
11:  [ 2 2 2 2 3 3 3 2 2 2 2 ]
12:  [ 2 3 5 5 5 3 2 ]
13:  [ 2 7 7 7 2 ]
(End)
From _Gus Wiseman_, Feb 16 2021: (Start)
The a(7) = 1 through a(19) = 8 partitions are the following (A..J = 10..19). The Heinz numbers of these partitions are given by A341449.
  7  53  9    55  B    75    D    77    F      97    H      99      J
         333  73  533  93    553  95    555    B5    755    B7      775
                       3333  733  B3    753    D3    773    D5      955
                                  5333  933    5533  953    F3      973
                                        33333  7333  B33    5553    B53
                                                     53333  7533    D33
                                                            9333    55333
                                                            333333  73333
(End)
		

References

  • J. W. L. Glaisher, Identities, Messenger of Mathematics, 5 (1876), pp. 111-112. see Eq. I

Crossrefs

The ordered version is A000931.
Partitions with no ones are counted by A002865, ranked by A005408.
The even version is A035363, ranked by A066207.
The version for factorizations is A340101.
Partitions whose only even part is the smallest are counted by A341447.
The Heinz numbers of these partitions are given by A341449.
A000009 counts partitions into odd parts, ranked by A066208.
A025147 counts strict partitions with no 1's.
A025148 counts strict partitions with no 1's or 2's.
A026804 counts partitions whose smallest part is odd, ranked by A340932.
A027187 counts partitions with even length/maximum, ranks A028260/A244990.
A027193 counts partitions with odd length/maximum, ranks A026424/A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A058696 counts partitions of even numbers, ranked by A300061.
A340385 counts partitions with odd length and maximum, ranked by A340386.

Programs

  • Haskell
    a087897 = p [3,5..] where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    To get 128 terms: t4 := mul((1+x^(2^n)),n=0..7); t5 := mul((1+x^k),k=1..128): t6 := series(t5/t4,x,100); t7 := seriestolist(t6);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<3, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(n, n-1+irem(n, 2)):
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 11 2013
  • Mathematica
    max = 65; f[x_] := Product[ 1/(1 - x^(2k+1)), {k, 1, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 16 2011, after Emeric Deutsch *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<3, 0, b[n, i-2]+If[i>n, 0, b[n-i, i]]] ]; a[n_] := b[n, n-1+Mod[n, 2]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Apr 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[PartitionsQ[n+1] - PartitionsQ[n], {n, 0, 80}]}] (* Vaclav Kotesovec, Dec 01 2015 *)
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&OddQ[Times@@#]&]],{n,0,30}] (* Gus Wiseman, Feb 16 2021 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - x) * eta(x^2 + A) / eta(x + A), n))} /* Michael Somos, Nov 13 2011 */
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A087897_T(n,k):
        if n==0: return 1
        if k<3 or n<0: return 0
        return A087897_T(n,k-2)+A087897_T(n-k,k)
    def A087897(n): return A087897_T(n,n-(n&1^1)) # Chai Wah Wu, Sep 23 2023, after Alois P. Heinz

Formula

Expansion of q^(-1/24) * (1 - q) * eta(q^2) / eta(q) in powers of q.
Expansion of (1 - x) / chi(-x) in powers of x where chi() is a Ramanujan theta function.
G.f.: 1 + x^3 + x^5*(1 + x) + x^7*(1 + x)*(1 + x^2) + x^9*(1 + x)*(1 + x^2)*(1 + x^3) + ... [Glaisher 1876]. - Michael Somos, Jun 20 2012
G.f.: Product_{k >= 1} 1/(1-x^(2*k+1)).
G.f.: Product_{k >= 1, k not a power of 2} (1+x^k).
G.f.: Sum_{k >= 1} x^(3*k)/Product_{j = 1..k} (1 - x^(2*j)). - Emeric Deutsch, Mar 30 2006
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (8 * 3^(3/4) * n^(5/4)) * (1 - (15*sqrt(3)/(8*Pi) + 11*Pi/(48*sqrt(3)))/sqrt(n) + (169*Pi^2/13824 + 385/384 + 315/(128*Pi^2))/n). - Vaclav Kotesovec, Aug 30 2015, extended Nov 04 2016
G.f.: 1/(1 - x^3) * Sum_{n >= 0} x^(5*n)/Product_{k = 1..n} (1 - x^(2*k)) = 1/((1 - x^3)*(1 - x^5)) * Sum_{n >= 0} x^(7*n)/Product_{k = 1..n} (1 - x^(2*k)) = ..., extending Deutsch's result dated Mar 30 2006. - Peter Bala, Jan 15 2021
G.f.: Sum_{n >= 0} x^(n*(2*n+1))/Product_{k = 2..2*n+1} (1 - x^k). (Set z = x^3 and q = x^2 in Mc Laughlin et al., Section 1.3, Entry 7.) - Peter Bala, Feb 02 2021
a(2*n+1) = Sum{j>=1} A008284(n+1-j,2*j - 1) and a(2*n) = Sum{j>=1} A008284(n-j, 2*j). - Gregory L. Simay, Sep 22 2023

A244991 Numbers whose greatest prime factor is a prime with an odd index; n such that A006530(n) is in A031368.

Original entry on oeis.org

2, 4, 5, 8, 10, 11, 15, 16, 17, 20, 22, 23, 25, 30, 31, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Antti Karttunen, Jul 21 2014

Keywords

Comments

Equally, numbers n for which A061395(n) is odd.
A122111 maps each one of these numbers to a unique term of A026424 and vice versa.
If the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), these are the Heinz numbers of partitions whose greatest part is odd, counted by A027193. - Gus Wiseman, Feb 08 2021

Examples

			From _Gus Wiseman_, Feb 08 2021: (Start)
The sequence of terms together with their prime indices begins:
      2: {1}           32: {1,1,1,1,1}     64: {1,1,1,1,1,1}
      4: {1,1}         33: {2,5}           66: {1,2,5}
      5: {3}           34: {1,7}           67: {19}
      8: {1,1,1}       40: {1,1,1,3}       68: {1,1,7}
     10: {1,3}         41: {13}            69: {2,9}
     11: {5}           44: {1,1,5}         73: {21}
     15: {2,3}         45: {2,2,3}         75: {2,3,3}
     16: {1,1,1,1}     46: {1,9}           77: {4,5}
     17: {7}           47: {15}            80: {1,1,1,1,3}
     20: {1,1,3}       50: {1,3,3}         82: {1,13}
     22: {1,5}         51: {2,7}           83: {23}
     23: {9}           55: {3,5}           85: {3,7}
     25: {3,3}         59: {17}            88: {1,1,1,5}
     30: {1,2,3}       60: {1,1,2,3}       90: {1,2,2,3}
     31: {11}          62: {1,11}          92: {1,1,9}
(End)
		

Crossrefs

Complement: A244990.
Looking at least instead of greatest prime index gives A026804.
The partitions with these Heinz numbers are counted by A027193.
The case where Omega is odd also is A340386.
A001222 counts prime factors.
A056239 adds up prime indices.
A300063 ranks partitions of odd numbers.
A061395 selects maximum prime index.
A066208 ranks partitions into odd parts.
A112798 lists the prime indices of each positive integer.
A340931 ranks odd-length partitions of odd numbers.

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]]&] (* Gus Wiseman, Feb 08 2021 *)

Formula

For all n, A244989(a(n)) = n.

A116882 A number k is included if (highest odd divisor of k)^2 <= k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1

Views

Author

Leroy Quet, Feb 24 2006

Keywords

Comments

Also k is included if (and only if) the greatest power of 2 dividing k is >= the highest odd divisor of k. All terms of the sequence are even besides the 1.
Equivalently, positive integers of the form k*2^m, where odd k <= 2^m. - Thomas Ordowski, Oct 19 2014
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence consists of 1 and all numbers without a superior odd divisor. - Gus Wiseman, Feb 18 2021
Numbers k such that A006519(k) >= A000265(k), with equality only when k = 1. - Amiram Eldar, Jan 24 2023

Examples

			40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
		

Crossrefs

The complement is A116883.
Positions of zeros (and 1) in A341675.
A051283 = numbers without a superior prime-power divisor (zeros of A341593).
A059172 = numbers without a superior squarefree divisor (zeros of A341592).
A063539 = numbers without a superior prime divisor (zeros of A341591).
A333805 counts strictly inferior odd divisors.
A341594 counts strictly superior odd divisors.
- Strictly Inferior: A056924, A060775, A070039, A333806, A341596, A341674.
Subsequence of A082662, {1} U A363122.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *)
    q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
  • PARI
    isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
    
  • PARI
    isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
    
  • Python
    from itertools import count, islice
    def A116882_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1)))
    A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023

Formula

a(n) = A080075(n-1)-1. - Klaus Brockhaus, Georgi Guninski and M. F. Hasler, Aug 16 2010
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023

Extensions

More terms from Stefan Steinerberger, Apr 10 2006

A069288 Number of odd divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(n) = #{d : d = A182469(n,k), d <= A000196(n), k=1..A001227(n)}. - Reinhard Zumkeller, Apr 05 2015

Examples

			From _Gus Wiseman_, Feb 11 2021: (Start)
The inferior odd divisors for selected n are the columns below:
n: 1    9   30   90  225  315  630  945 1575 2835 4410 3465 8190 6930
  --------------------------------------------------------------------
   1    3    5    9   15   15   21   27   35   45   63   55   65   77
        1    3    5    9    9   15   21   25   35   49   45   63   63
             1    3    5    7    9   15   21   27   45   35   45   55
                  1    3    5    7    9   15   21   35   33   39   45
                       1    3    5    7    9   15   21   21   35   35
                            1    3    5    7    9   15   15   21   33
                                 1    3    5    7    9   11   15   21
                                      1    3    5    7    9   13   15
                                           1    3    5    7    9   11
                                                1    3    5    7    9
                                                     1    3    5    7
                                                          1    3    5
                                                               1    3
                                                                    1
(End)
		

Crossrefs

Positions of first appearances are A334853.
A055396 selects the least prime index.
A061395 selects the greatest prime index.
- Odd -
A000009 counts partitions into odd parts (A066208).
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
A067659 counts strict partitions of odd length (A030059).
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the least superior divisor.
A038548 counts inferior divisors.
A060775 selects the greatest strictly inferior divisor.
A063538 lists numbers with a superior prime divisor.
A063539 lists numbers without a superior prime divisor.
A063962 counts inferior prime divisors.
A064052 lists numbers with a properly superior prime divisor.
A140271 selects the least properly superior divisor.
A217581 selects the greatest inferior divisor.
A333806 counts strictly inferior prime divisors.

Programs

Formula

G.f.: Sum_{n>=1} 1/(1-q^(2*n-1)) * q^((2*n-1)^2). [Joerg Arndt, Mar 04 2010]

A340604 Heinz numbers of integer partitions of odd positive rank.

Original entry on oeis.org

3, 7, 10, 13, 15, 19, 22, 25, 28, 29, 33, 34, 37, 42, 43, 46, 51, 52, 53, 55, 61, 62, 63, 69, 70, 71, 76, 77, 78, 79, 82, 85, 88, 89, 93, 94, 98, 101, 105, 107, 113, 114, 115, 116, 117, 118, 119, 121, 123, 130, 131, 132, 134, 136, 139, 141, 146, 147, 148, 151
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      3: (2)         46: (9,1)       82: (13,1)
      7: (4)         51: (7,2)       85: (7,3)
     10: (3,1)       52: (6,1,1)     88: (5,1,1,1)
     13: (6)         53: (16)        89: (24)
     15: (3,2)       55: (5,3)       93: (11,2)
     19: (8)         61: (18)        94: (15,1)
     22: (5,1)       62: (11,1)      98: (4,4,1)
     25: (3,3)       63: (4,2,2)    101: (26)
     28: (4,1,1)     69: (9,2)      105: (4,3,2)
     29: (10)        70: (4,3,1)    107: (28)
     33: (5,2)       71: (20)       113: (30)
     34: (7,1)       76: (8,1,1)    114: (8,2,1)
     37: (12)        77: (5,4)      115: (9,3)
     42: (4,2,1)     78: (6,2,1)    116: (10,1,1)
     43: (14)        79: (22)       117: (6,2,2)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
These partitions are counted by A101707.
Allowing negative ranks gives A340692, counted by A340603.
The even version is A340605, counted by A101708.
The not necessarily odd case is A340787, counted by A064173.
A001222 gives number of prime indices.
A061395 gives maximum prime index.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A064173 counts partitions of negative rank (A340788).
A064174 counts partitions of nonnegative rank (A324562).
A064174 (also) counts partitions of nonpositive rank (A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts (A066208).
A027193 counts partitions of odd length (A026424).
A027193 (also) counts partitions of odd maximum (A244991).
A058695 counts partitions of odd numbers (A300063).
A067659 counts strict partitions of odd length (A030059).
A160786 counts odd-length partitions of odd numbers (A300272).
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[100],OddQ[rk[#]]&&rk[#]>0&]

Formula

A061395(a(n)) - A001222(a(n)) is odd and positive.

A341594 Number of strictly superior odd divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 1, 1, 0, 1, 1, 2, 1, 1, 2, 2, 0, 2, 1, 1, 1, 1, 1, 3, 0, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 0, 1, 1, 3, 1, 1, 2, 1, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 23 2021

Keywords

Comments

We define a divisor d|n to be strictly superior if d > n/d. Strictly superior divisors are counted by A056924 and listed by A341673.

Examples

			The a(n) divisors for n = 3, 15, 45, 105, 315, 405, 945, 1575, 1890:
  3  5   9   15   21   27   35   45    45
     15  15  21   35   45   45   63    63
         45  35   45   81   63   75    105
             105  63   135  105  105   135
                  105  405  135  175   189
                  315       189  225   315
                            315  315   945
                            945  525
                                 1575
		

Crossrefs

On odd indices, equals A056924 (number of strictly superior divisors).
The inferior version is A069288.
Positions of zeros are A116882.
Positions of nonzero terms are A116883.
The strictly inferior version is A333805.
The version for squarefree instead of odd divisors is A341595.
The version for prime instead of odd divisors is A341642.
The version for prime-power instead of odd divisors is A341644.
The superior version is A341675.
A033676 selects the greatest inferior divisor.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A140271 selects the smallest strictly superior divisor.
A207375 lists central divisors.
A341673 lists strictly superior divisors.
- Strictly Inferior: A060775, A070039, A333806, A341596, A341674.
- Strictly Superior: A048098, A064052, A238535, A341643, A341645, A341646.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],OddQ[#]&&#>n/#&]],{n,100}]
  • PARI
    A341594(n) = sumdiv(n,d,(d%2)*(d>(n/d))); \\ Antti Karttunen, Feb 23 2021

A340102 Number of factorizations of 2n + 1 into an odd number of odd factors > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2020

Keywords

Examples

			The factorizations for 2n + 1 = 135, 225, 315, 405, 675, 1155, 1215:
  135      225      315      405         675         1155      1215
  3*5*9    5*5*9    5*7*9    5*9*9       3*3*75      3*5*77    3*5*81
  3*3*15   3*3*25   3*3*35   3*3*45      3*5*45      3*7*55    3*9*45
           3*5*15   3*5*21   3*5*27      3*9*25      5*7*33    5*9*27
                    3*7*15   3*9*15      5*5*27      3*11*35   9*9*15
                             3*3*3*3*5   5*9*15      5*11*21   3*15*27
                                         3*15*15     7*11*15   3*3*135
                                         3*3*3*5*5             3*3*3*5*9
                                                               3*3*3*3*15
		

Crossrefs

The version for partitions is A160786, ranked by A300272.
The not necessarily odd-length version is A340101.
A000009 counts partitions into odd parts, ranked by A066208.
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length, ranked by A026424.
A058695 counts partitions of odd numbers, ranked by A300063.
A316439 counts factorizations by product and length.

Programs

  • Maple
    g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> `if`(n=0, 0, g(2*n+1$2, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Times@@#]&]],{n,1,100,2}];

A340607 Number of factorizations of n into an odd number of factors > 1, the greatest of which is odd.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 1, 1, 1, 2, 2, 0, 1, 3, 1, 0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 0, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2021

Keywords

Examples

			The a(n) factorizations for n = 27, 84, 108, 180, 252, 360, 432:
  27     2*6*7   2*6*9      4*5*9      4*7*9      5*8*9       6*8*9
  3*3*3  3*4*7   3*4*9      2*2*45     6*6*7      2*4*45      2*8*27
         2*2*21  2*2*27     2*6*15     2*2*63     3*8*15      4*4*27
                 2*2*3*3*3  3*4*15     2*6*21     4*6*15      2*2*2*6*9
                            2*2*3*3*5  3*4*21     2*12*15     2*2*3*4*9
                                       2*2*3*3*7  2*2*2*5*9   2*2*2*2*27
                                                  2*3*3*4*5   2*2*2*2*3*3*3
                                                  2*2*2*3*15
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The case of odd length only is A339890.
The case of all odd factors is A340102.
The version for partitions is A340385.
The version for prime indices is A340386.
The case of odd maximum only is A340831.
A000009 counts partitions into odd parts (A066208).
A001055 counts factorizations, with strict case A045778.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A058695 counts partitions of odd numbers (A300063).
A078408 counts odd-length partitions into odd numbers (A300272).
A316439 counts factorizations by sum and length.
A340101 counts factorizations (into odd factors = of odd numbers).
A340832 counts factorizations whose least part is odd.
A340854/A340855 lack/have a factorization with odd minimum.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],OddQ[Length[#]]&&OddQ[Max@@#]&]],{n,100}]
  • PARI
    A340607(n, m=n, k=0, grodd=0) = if(1==n, k, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&(grodd||(d%2)), s += A340607(n/d, d, 1-k, bitor(1,grodd)))); (s)); \\ Antti Karttunen, Dec 13 2021

Extensions

Data section extended up to 108 terms by Antti Karttunen, Dec 13 2021

A340854 Numbers that cannot be factored into factors > 1, the least of which is odd.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 44, 46, 52, 58, 62, 64, 68, 74, 76, 82, 86, 88, 92, 94, 104, 106, 116, 118, 122, 124, 128, 134, 136, 142, 146, 148, 152, 158, 164, 166, 172, 178, 184, 188, 194, 202, 206, 212, 214, 218, 226, 232, 236, 244
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Consists of 1 and all numbers that are even and have no odd divisor 1 < d <= n/d.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}              44: {1,1,5}          106: {1,16}
      2: {1}             46: {1,9}            116: {1,1,10}
      4: {1,1}           52: {1,1,6}          118: {1,17}
      6: {1,2}           58: {1,10}           122: {1,18}
      8: {1,1,1}         62: {1,11}           124: {1,1,11}
     10: {1,3}           64: {1,1,1,1,1,1}    128: {1,1,1,1,1,1,1}
     14: {1,4}           68: {1,1,7}          134: {1,19}
     16: {1,1,1,1}       74: {1,12}           136: {1,1,1,7}
     20: {1,1,3}         76: {1,1,8}          142: {1,20}
     22: {1,5}           82: {1,13}           146: {1,21}
     26: {1,6}           86: {1,14}           148: {1,1,12}
     28: {1,1,4}         88: {1,1,1,5}        152: {1,1,1,8}
     32: {1,1,1,1,1}     92: {1,1,9}          158: {1,22}
     34: {1,7}           94: {1,15}           164: {1,1,13}
     38: {1,8}          104: {1,1,1,6}        166: {1,23}
For example, the factorizations of 88 are (2*2*2*11), (2*2*22), (2*4*11), (2*44), (4*22), (8*11), (88), none of which has odd minimum, so 88 is in the sequence.
		

Crossrefs

The version looking at greatest factor is A000079.
The version for twice-balanced is A340656, with complement A340657.
These factorization are counted by A340832.
The complement is A340855.
A033676 selects the maximum inferior divisor.
A038548 counts inferior divisors.
A055396 selects the least prime index.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A024429 counts set partitions of odd length.
A026424 lists numbers with odd Omega.
A066208 lists Heinz numbers of partitions into odd parts.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.

Programs

  • Mathematica
    Select[Range[100],Function[n,n==1||EvenQ[n]&&Select[Rest[Divisors[n]],OddQ[#]&&#<=n/#&]=={}]]
Showing 1-10 of 27 results. Next