A350697 Smallest number m > 1 such that n * m = A350538(n) contains only even digits.
2, 2, 2, 2, 4, 4, 4, 3, 32, 2, 2, 2, 2, 2, 4, 3, 4, 16, 12, 2, 2, 2, 2, 2, 8, 8, 18, 3, 14, 2, 2, 2, 2, 2, 8, 8, 6, 6, 12, 2, 2, 2, 2, 2, 64, 10, 6, 5, 14, 4, 4, 4, 8, 9, 4, 4, 4, 7, 14, 4, 4, 4, 14, 7, 4, 4, 4, 3, 12, 4, 4, 4, 28, 3, 8, 3, 6, 6, 34, 3, 6, 3, 8, 5, 8
Offset: 1
Examples
The smallest proper multiple of 9 with only even digits is A350538(9) = 288, as 288 = 9 * 32, a(9) = 32.
Programs
-
Mathematica
a[n_] := Module[{k = 2*n}, While[! AllTrue[IntegerDigits[k], EvenQ], k += n]; k/n]; Array[a, 100] (* Amiram Eldar, Jan 12 2022 *)
-
PARI
a(n) = my(k=2); while(#select(x->((x%2) == 1), digits(k*n)), k++); k; \\ Michel Marcus, Jan 12 2022
Formula
a(n) = A350538(n) / n.
Extensions
More terms from Michel Marcus, Jan 12 2022
Comments