cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A067045 Duplicate of A061807.

Original entry on oeis.org

2, 2, 6, 4, 20, 6, 28, 8, 288, 20, 22, 24, 26, 28, 60, 48, 68, 288, 228, 20, 42, 22, 46, 24
Offset: 1

Views

Author

Keywords

A083467 Duplicate of A061807.

Original entry on oeis.org

2, 2, 6, 4, 20, 6, 28, 8, 288, 20, 22, 24, 26, 28, 60, 48, 68, 288, 228, 20, 42, 22, 46, 24
Offset: 1

Views

Author

Keywords

A350538 a(n) is the smallest proper multiple of n which contains only even digits.

Original entry on oeis.org

2, 4, 6, 8, 20, 24, 28, 24, 288, 20, 22, 24, 26, 28, 60, 48, 68, 288, 228, 40, 42, 44, 46, 48, 200, 208, 486, 84, 406, 60, 62, 64, 66, 68, 280, 288, 222, 228, 468, 80, 82, 84, 86, 88, 2880, 460, 282, 240, 686, 200, 204, 208, 424, 486, 220, 224, 228, 406, 826
Offset: 1

Views

Author

Bernard Schott, Jan 05 2022

Keywords

Comments

Inspired by the problem 1/2 of International Mathematical Talent Search, round 2 (see link).
Differs from A061807 when n is in A014263. - Michel Marcus, Jan 05 2022

Examples

			a(9) = 288 = 32 * 9 is the smallest multiple of 9 which contains only even digits.
		

Crossrefs

Terms belong to A014263.

Programs

  • Mathematica
    a[n_] := Module[{k = 2*n}, While[! AllTrue[IntegerDigits[k], EvenQ], k += n]; k]; Array[a, 60] (* Amiram Eldar, Jan 05 2022 *)
  • PARI
    a(n) = my(k=2); while(#select(x->((x%2) == 1), digits(k*n)), k++); k*n; \\ Michel Marcus, Jan 12 2022
  • Python
    def a(n):
        m, inc = 2*n, n if n%2 == 0 else 2*n
        while not set(str(m)) <= set("02468"): m += inc
        return m
    print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Jan 05 2022
    
  • Python
    from itertools import count, product
    def A350538(n):
        for l in count(len(str(n))-1):
            for a in '2468':
                for b in product('02468',repeat=l):
                    k = int(a+''.join(b))
                    if k > n and k % n == 0:
                        return k # Chai Wah Wu, Jan 12 2022
    

Extensions

More terms from Michael S. Branicky, Jan 05 2022

A061808 a(n) is the smallest number with all digits odd that is divisible by 2n-1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 315, 115, 75, 135, 319, 31, 33, 35, 37, 39, 533, 559, 135, 517, 539, 51, 53, 55, 57, 59, 793, 315, 195, 335, 759, 71, 73, 75, 77, 79, 1377, 913, 595, 957, 979, 91, 93, 95, 97, 99, 1111, 515, 315, 535, 1199, 111, 113, 115, 117, 119, 1331, 1353, 375, 1397, 1935
Offset: 1

Views

Author

Amarnath Murthy, May 28 2001

Keywords

Comments

From Yang Haoran, Dec 02 2017, edited by M. F. Hasler, Mar 05 2025: (Start)
Record value for a(n) = (2n-1) * A296009(n):
(1, 3, 5, ..., 19) * 1 = (1, 3, 5, ..., 19)
21 * 15 = 315
29 * 11 = 319
41 * 13 = 533
43 * 13 = 559
61 * 13 = 793
81 * 17 = 1377
127 * 11 = 1397
129 * 15 = 1935
149 * 13 = 1937
167 * 19 = 3173
169 * 33 = 5577
201 * 155 = 31155
299 * 105 = 31395
401 * 133 = 53333
601 * 119 = 71519
633 * 283 = 179139
(complete up to here)
...
990001 * 12121113 = 11999913991113 (the first A296009(n) > 2n-1).
(End)
All terms must be odd. - M. F. Hasler, Mar 05 2025

Crossrefs

Equals A296009 * (2n-1).

Programs

  • Magma
    a:=[]; for n in [1..120 by 2] do k:=1; while not Set(Intseq(n*k)) subset {1,3,5,7,9} do k:=k+2; end while; Append(~a,k*n); end for; a; // Marius A. Burtea, Sep 20 2019
    
  • Maple
    Ad[1]:= [1,3,5,7,9]:
    for n from 2 to 9 do Ad[n]:= map(t -> seq(10*t+j,j=[1,3,5,7,9]), Ad[n-1]) od:
    Aod:= [seq(op(Ad[i]),i=1..9)]:
    f:= proc(n) local k;
       for k from 1 to nops(Aod) do
           if Aod[k] mod (2*n-1) = 0 then return(Aod[k]) fi
         od;
         NotFound
    end proc:
    map(f, [$1..100]); # Robert Israel, Feb 15 2017
  • Mathematica
    Table[Block[{k = 2 n - 1}, While[Nand[AllTrue[IntegerDigits@ k, OddQ], Divisible[k, 2 n - 1]], k += 2]; k], {n, 59}] (* Michael De Vlieger, Dec 02 2017 *)
  • PARI
    isoddd(n) = #select(x->((x%2) == 0), digits(n)) == 0;
    a(n) = {my(m = 2*n-1, k = 1); while(!isoddd(k*m), k++); k*m;} \\ Michel Marcus, Sep 20 2019
    
  • PARI
    apply( {A061808(n)=forstep(k=n*2-1,oo,n*4-2,vecmin(digits(k)%2)&& return(k))}, [1..99])
    
  • Python
    A061808 = lambda n: next(m for m in range(2*n-1,9<<99,4*n-2) if all(int(d)&1 for d in str(m))) # M. F. Hasler, Mar 05 2025

Formula

From M. F. Hasler, Mar 05 2025: (Start)
a(n) = (2n-1)*A296009(n).
a(n) == 1 (mod 2) for all n. (End)

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 30 2001

A067044 Smallest positive k such that k*n contains only even digits.

Original entry on oeis.org

2, 1, 2, 1, 4, 1, 4, 1, 32, 2, 2, 2, 2, 2, 4, 3, 4, 16, 12, 1, 2, 1, 2, 1, 8, 1, 18, 1, 14, 2, 2, 2, 2, 2, 8, 8, 6, 6, 12, 1, 2, 1, 2, 1, 64, 1, 6, 1, 14, 4, 4, 4, 8, 9, 4, 4, 4, 7, 14, 1, 4, 1, 14, 1, 4, 1, 4, 1, 12, 4, 4, 4, 28, 3, 8, 3, 6, 6, 34, 1, 6, 1, 8, 1, 8, 1, 24, 1, 32, 32, 22, 5, 22, 3
Offset: 1

Views

Author

Amarnath Murthy, Dec 29 2001

Keywords

Comments

No multiple of 10 can appear in this sequence. - M. F. Hasler, Mar 07 2025

Examples

			a(7) = 4 as among the multiples of 7 (i.e., 7, 14, 21, 28...), 28 is the smallest multiple with only even digits and a(7)= 28/7 = 4.
a(16) = 3 is the first odd term > 1, a(n = 54, 58, 74, 76, 92, 94, 96, 98, ...) are the next examples, cf. A380874. - _M. F. Hasler_, Mar 03 2025
		

Crossrefs

Cf. A014263 (numbers with only even digits), A007091 (numbers in base 5).

Programs

  • Mathematica
    Table[k = n; While[Length[Intersection[{1, 3, 5, 7, 9}, IntegerDigits[k]]] > 0, k = k + n]; k/n, {n, 100}] (* T. D. Noe, Jun 03 2013 *)
    sk[n_]:=Module[{k=1},While[!AllTrue[IntegerDigits[k*n],EvenQ],k++];k]; Array[sk,100] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    apply( {A067044(n, f=1+n%2)=forstep(a=f*n, oo, f*n, digits(a)%2||return(a/n))}, [1..99]) \\ M. F. Hasler, Mar 03 2025
    
  • Python
    A067044 = lambda n: next(k for k in range(1+n%2, 9<<99, 1+n%2)if not any(int(d)&1 for d in str(n*k))) # M. F. Hasler, Mar 03 2025

Formula

From M. F. Hasler, Mar 07 2025: (Start)
There is an explicit formula for many values of n:
a(n) = 1 if n has only even digits <=> n is in A014263, else:
a(n) = 2 if n has only digits < 5 <=> n is in A007091;
a(m*(10^k-1)) = 8*round(10^k/6)^2/m for m = 1, 2, 4 or 8 and any k > 0;
a(5*(10^k-1)) = 16*round(10^k/6)^2 for any k > 0;
a(50*m + {5 or 15}) = 4 if m has all digits < 5. (End)

Extensions

More terms from Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), May 06 2002
Data corrected by Paul Tek, Jun 03 2013

A350697 Smallest number m > 1 such that n * m = A350538(n) contains only even digits.

Original entry on oeis.org

2, 2, 2, 2, 4, 4, 4, 3, 32, 2, 2, 2, 2, 2, 4, 3, 4, 16, 12, 2, 2, 2, 2, 2, 8, 8, 18, 3, 14, 2, 2, 2, 2, 2, 8, 8, 6, 6, 12, 2, 2, 2, 2, 2, 64, 10, 6, 5, 14, 4, 4, 4, 8, 9, 4, 4, 4, 7, 14, 4, 4, 4, 14, 7, 4, 4, 4, 3, 12, 4, 4, 4, 28, 3, 8, 3, 6, 6, 34, 3, 6, 3, 8, 5, 8
Offset: 1

Views

Author

Bernard Schott, Jan 12 2022

Keywords

Comments

The smallest odd term is a(48) = 5 because 48*5 = 240.
Record values of a(n) are 2, 4, 32, 64, ...

Examples

			The smallest proper multiple of 9 with only even digits is A350538(9) = 288, as 288 = 9 * 32, a(9) = 32.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 2*n}, While[! AllTrue[IntegerDigits[k], EvenQ], k += n]; k/n]; Array[a, 100] (* Amiram Eldar, Jan 12 2022 *)
  • PARI
    a(n) = my(k=2); while(#select(x->((x%2) == 1), digits(k*n)), k++); k; \\ Michel Marcus, Jan 12 2022

Formula

a(n) = A350538(n) / n.

Extensions

More terms from Michel Marcus, Jan 12 2022

A381699 a(n) is the least nontrivial multiple of 2*n with the least possible number of even digits.

Original entry on oeis.org

4, 8, 12, 16, 30, 36, 56, 32, 36, 40, 110, 72, 52, 56, 90, 96, 136, 72, 76, 80, 336, 132, 92, 96, 150, 156, 378, 112, 116, 120, 310, 192, 132, 136, 350, 576, 370, 152, 156, 160, 574, 336, 172, 176, 990, 552, 376, 192, 196, 300, 510, 312, 318, 756, 330, 336, 570, 1392, 354, 360, 732, 372, 378
Offset: 1

Views

Author

Ali Sada and M. F. Hasler, Mar 04 2025

Keywords

Comments

By nontrivial multiple, we mean a multiple strictly larger than the number.
For even numbers, the last digit of any multiple will always be even. Also, for multiples of 10^k, all multiples will always have at least k even digits, namely k trailing '0's. Thus, if the number is a multiple of 2*10^k, there will be at least k+1 trailing even digits.
Question: if n is even, but not a multiple of 10, is there always a multiple k*n for which the last digit is the only even digit? If not, what is the smallest counterexample?
Records values of k(n) = a(n)/2n are k(1) = 2, k(5) = 3, k(7) = 4, k(11) = 5, k(21) = 8, k(45) = 11, k(58) = 12, k(101) = 55, k(182) = 108, k(1001) = 555, k(2001) = 778, k(3996) = 1001, k(7992) = 3253, k(9091) = 21545, k(9901) = 161155, ...

Examples

			a(4) = 16 is the least nontrivial multiple of 8 with only one even digit.
a(5) = 30 is the least nontrivial multiple of 10 with only one even digit.
a(10) = 40 because 40 is the least nontrivial multiple of 20, and all multiples of 20 will always have (at least) the last two digits even.
a(41) = 574 is the least positive multiple of 82 that has only one even digit.
		

Crossrefs

Cf. A061808 (similar for odd numbers), A061807.
Cf. A118070 (numbers with exactly one even decimal digit).

Programs

  • PARI
    apply( {A381699(n, o=valuation(5*n*=2,10))=for(k=2, oo, #[0|d<-digits(n*k)%2, !d]>o|| return(k*n))}, [1..99]) \\ M. F. Hasler, Mar 04 2025
Showing 1-7 of 7 results.