A351265 Sum of the squares of the squarefree divisors of n.
1, 5, 10, 5, 26, 50, 50, 5, 10, 130, 122, 50, 170, 250, 260, 5, 290, 50, 362, 130, 500, 610, 530, 50, 26, 850, 10, 250, 842, 1300, 962, 5, 1220, 1450, 1300, 50, 1370, 1810, 1700, 130, 1682, 2500, 1850, 610, 260, 2650, 2210, 50, 50, 130, 2900, 850, 2810, 50, 3172, 250, 3620
Offset: 1
Examples
a(6) = 50; a(6) = Sum_{d|6} d^2 * mu(d)^2 = 1^2*1 + 2^2*1 + 3^2*1 + 6^2*1 = 50.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^2); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *) Table[Total[Select[Divisors[n],SquareFreeQ]^2],{n,80}] (* Harvey P. Dale, Dec 26 2024 *)
-
PARI
a(n) = sumdiv(n, d, if (issquarefree(d), d^2)); \\ Michel Marcus, Feb 06 2022
Formula
a(n) = Sum_{d|n} d^2 * mu(d)^2.
a(n) = abs(A328639(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^2 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^2. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(3*zeta(2)) = A253905 / 3 = 0.243587... . - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s-4). - Michael Shamos, Aug 05 2023
Comments