cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351309 Sum of the 4th powers of the square divisors of n.

Original entry on oeis.org

1, 1, 1, 257, 1, 1, 1, 257, 6562, 1, 1, 257, 1, 1, 1, 65793, 1, 6562, 1, 257, 1, 1, 1, 257, 390626, 1, 6562, 257, 1, 1, 1, 65793, 1, 1, 1, 1686434, 1, 1, 1, 257, 1, 1, 1, 257, 6562, 1, 1, 65793, 5764802, 390626, 1, 257, 1, 6562, 1, 257, 1, 1, 1, 257, 1, 1, 6562, 16843009, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2022

Keywords

Comments

Inverse Möbius transform of n^4 * c(n), where c(n) is the characteristic function of squares (A010052). - Wesley Ivan Hurt, Jun 29 2024

Examples

			a(16) = 65793; a(16) = Sum_{d^2|16} (d^2)^4 = (1^2)^4 + (2^2)^4 + (4^2)^4 = 65793.
		

Crossrefs

Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), this sequence (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), A351315 (k=10).

Programs

  • Mathematica
    f[p_, e_] := (p^(8*(1 + Floor[e/2])) - 1)/(p^8 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
    Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^4],{n,70}] (* Harvey P. Dale, Feb 11 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), d^4)); \\ Michel Marcus, Jun 05 2024

Formula

a(n) = Sum_{d^2|n} (d^2)^4.
Multiplicative with a(p) = (p^(8*(1+floor(e/2))) - 1)/(p^8 - 1). - Amiram Eldar, Feb 07 2022
From Amiram Eldar, Sep 20 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-8).
Sum_{k=1..n} a(k) ~ (zeta(9/2)/9) * n^(9/2). (End)
G.f.: Sum_{k>=1} k^8 * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Jun 05 2024
a(n) = Sum_{d|n} d^4 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 29 2024
a(n) = Sum_{d|n} lambda(d)*d^4*sigma_4(n/d), where lambda = A008836. - Ridouane Oudra, Jul 19 2025