A352031 Sum of the cubes of the odd proper divisors of n.
0, 1, 1, 1, 1, 28, 1, 1, 28, 126, 1, 28, 1, 344, 153, 1, 1, 757, 1, 126, 371, 1332, 1, 28, 126, 2198, 757, 344, 1, 3528, 1, 1, 1359, 4914, 469, 757, 1, 6860, 2225, 126, 1, 9632, 1, 1332, 4257, 12168, 1, 28, 344, 15751, 4941, 2198, 1, 20440, 1457, 344, 6887, 24390, 1, 3528, 1
Offset: 1
Examples
a(10) = 126; a(10) = Sum_{d|10, d<10, d odd} d^3 = 1^3 + 5^3 = 126.
Links
Crossrefs
Programs
-
Mathematica
f[2, e_] := 1; f[p_, e_] := (p^(3*e+3) - 1)/(p^3 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^3, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *) Table[Total[Select[Most[Divisors[n]],OddQ]^3],{n,70}] (* Harvey P. Dale, Apr 14 2025 *)
-
PARI
a(n) = sumdiv(n/2^valuation(n,2), d, if ((d
Michel Marcus, Mar 02 2022
Formula
a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^3 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
From Amiram Eldar, Oct 11 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)-1)/8 = 0.0102904042... . (End)