cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352047 Sum of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 7, 8, 12, 12, 11, 16, 13, 16, 23, 16, 17, 26, 19, 24, 31, 24, 23, 32, 30, 28, 39, 32, 29, 48, 31, 32, 47, 36, 47, 52, 37, 40, 55, 48, 41, 64, 43, 48, 77, 48, 47, 64, 56, 62, 71, 56, 53, 80, 71, 64, 79, 60, 59, 96, 61, 64, 103, 64, 83, 96, 67, 72, 95, 96, 71, 104
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 12; a(10) = 10 * Sum_{d|10, d<10, d odd} 1 / d = 10 * (1/1 + 1/5) = 12.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), this sequence (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    A352047 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if type(d,'odd') and d < n then
                a := a+n/d ;
            end if;
        end do:
        a ;
    end proc:
    seq(A352047(n),n=1..30) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    Table[n DivisorSum[n, 1/# &, # < n && OddQ[#] &], {n, 72}] (* Michael De Vlieger, Mar 02 2022 *)
    a[n_] := DivisorSigma[-1, n / 2^IntegerExponent[n, 2]] * n - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n*sumdiv(n, d, if ((d%2) && (dMichel Marcus, Mar 02 2022
    
  • PARI
    a(n) = n * sigma(n >> valuation(n, 2), -1) - n % 2; \\ Amiram Eldar, Oct 13 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A352047(n): return prod(p**e if p == 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) - n % 2 # Chai Wah Wu, Mar 02 2022

Formula

a(n) = n * Sum_{d|n, d
a(2n+1) = A000593(2n+1) - 1. - Chai Wah Wu, Mar 01 2022
G.f.: Sum_{k>=2} k * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
exp( 2*Sum_{n>=1} a(n)*x^n/n ) is the g.f. of A300415. - Paul D. Hanna, May 15 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A000593(n) * A006519(n) - A000035(n).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = Pi^2/8 = 1.23370055... (A111003). (End)