A352047 Sum of the divisor complements of the odd proper divisors of n.
0, 2, 3, 4, 5, 8, 7, 8, 12, 12, 11, 16, 13, 16, 23, 16, 17, 26, 19, 24, 31, 24, 23, 32, 30, 28, 39, 32, 29, 48, 31, 32, 47, 36, 47, 52, 37, 40, 55, 48, 41, 64, 43, 48, 77, 48, 47, 64, 56, 62, 71, 56, 53, 80, 71, 64, 79, 60, 59, 96, 61, 64, 103, 64, 83, 96, 67, 72, 95, 96, 71, 104
Offset: 1
Examples
a(10) = 12; a(10) = 10 * Sum_{d|10, d<10, d odd} 1 / d = 10 * (1/1 + 1/5) = 12.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A352047 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if type(d,'odd') and d < n then a := a+n/d ; end if; end do: a ; end proc: seq(A352047(n),n=1..30) ; # R. J. Mathar, Mar 09 2022
-
Mathematica
Table[n DivisorSum[n, 1/# &, # < n && OddQ[#] &], {n, 72}] (* Michael De Vlieger, Mar 02 2022 *) a[n_] := DivisorSigma[-1, n / 2^IntegerExponent[n, 2]] * n - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
-
PARI
a(n) = n*sumdiv(n, d, if ((d%2) && (d
Michel Marcus, Mar 02 2022 -
PARI
a(n) = n * sigma(n >> valuation(n, 2), -1) - n % 2; \\ Amiram Eldar, Oct 13 2023
-
Python
from math import prod from sympy import factorint def A352047(n): return prod(p**e if p == 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) - n % 2 # Chai Wah Wu, Mar 02 2022
Formula
a(n) = n * Sum_{d|n, d
a(2n+1) = A000593(2n+1) - 1. - Chai Wah Wu, Mar 01 2022
G.f.: Sum_{k>=2} k * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
exp( 2*Sum_{n>=1} a(n)*x^n/n ) is the g.f. of A300415. - Paul D. Hanna, May 15 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = Pi^2/8 = 1.23370055... (A111003). (End)