A352048 Sum of the squares of the divisor complements of the odd proper divisors of n.
0, 4, 9, 16, 25, 40, 49, 64, 90, 104, 121, 160, 169, 200, 259, 256, 289, 364, 361, 416, 499, 488, 529, 640, 650, 680, 819, 800, 841, 1040, 961, 1024, 1219, 1160, 1299, 1456, 1369, 1448, 1699, 1664, 1681, 2000, 1849, 1952, 2365, 2120, 2209, 2560, 2450, 2604, 2899, 2720
Offset: 1
Examples
a(10) = 10^2 * Sum_{d|10, d<10, d odd} 1 / d^2 = 10^2 * (1/1^2 + 1/5^2) = 104.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m,d; m:= n/2^padic:-ordp(n,2); add((n/d)^2, d = select(`<`,numtheory:-divisors(m),n)) end proc: map(f, [$1..60]); # Robert Israel, Apr 03 2023
-
Mathematica
a[n_] := n^2 DivisorSum[n, If[# < n && OddQ[#], 1/#^2, 0]&]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, May 11 2023 *) a[n_] := DivisorSigma[-2, n/2^IntegerExponent[n, 2]] * n^2 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
-
PARI
a(n) = n^2*sumdiv(n, d, if ((d
Michel Marcus, May 11 2023 -
PARI
a(n) = n^2 * sigma(n >> valuation(n, 2), -2) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^2 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^2 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^3 / 3, where c = 7*zeta(3)/8 = 1.0517997... (A233091). (End)