cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A353864 Number of rucksack partitions of n: every consecutive constant subsequence has a different sum.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 19, 25, 33, 39, 51, 65, 82, 101, 126, 154, 191, 232, 284, 343, 416, 496, 600, 716, 855, 1018, 1209, 1430, 1691, 1991, 2345, 2747, 3224, 3762, 4393, 5116, 5946, 6897, 7998, 9257, 10696, 12336, 14213, 16343, 18781, 21538, 24687, 28253, 32291, 36876, 42057
Offset: 0

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

In a knapsack partition (A108917), every submultiset has a different sum, so these are run-knapsack partitions or rucksack partitions for short. Another variation of knapsack partitions is A325862.

Examples

			The a(0) = 1 through a(7) = 11 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (21)   (22)    (32)     (33)      (43)
                 (111)  (31)    (41)     (42)      (52)
                        (1111)  (221)    (51)      (61)
                                (311)    (222)     (322)
                                (11111)  (321)     (331)
                                         (411)     (421)
                                         (111111)  (511)
                                                   (2221)
                                                   (4111)
                                                   (1111111)
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
The strong case is A353838, counted by A353837, complement A353839.
The perfect case is A353865, ranked by A353867.
These partitions are ranked by A353866.
A000041 counts partitions, strict A000009.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Total/@Select[msubs[#],SameQ@@#&]&]],{n,0,30}]

Extensions

a(50)-a(53) from Robert Price, Apr 03 2025

A353846 Triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory of length k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 1, 0, 0, 0, 0, 5, 9, 1, 0, 0, 0, 0, 0, 6, 11, 4, 1, 0, 0, 0, 0, 0, 8, 20, 2, 0, 0, 0, 0, 0, 0, 0, 10, 25, 7, 0, 0, 0, 0, 0, 0, 0, 0, 12, 37, 6, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking run-sums (or condensations) until a strict partition is reached. For example, the trajectory of (2,1,1) is (2,1,1) -> (2,2) -> (4).
Also the number of integer partitions of n with Kimberling's depth statistic (see A237685, A237750) equal to k-1.

Examples

			Triangle begins:
   1
   0   1
   0   1   1
   0   2   1   0
   0   2   2   1   0
   0   3   4   0   0   0
   0   4   6   1   0   0   0
   0   5   9   1   0   0   0   0
   0   6  11   4   1   0   0   0   0
   0   8  20   2   0   0   0   0   0   0
   0  10  25   7   0   0   0   0   0   0   0
   0  12  37   6   1   0   0   0   0   0   0   0
   0  15  47  13   2   0   0   0   0   0   0   0   0
   0  18  67  15   1   0   0   0   0   0   0   0   0   0
   0  22  85  25   3   0   0   0   0   0   0   0   0   0   0
   0  27 122  26   1   0   0   0   0   0   0   0   0   0   0   0
For example, row n = 8 counts the following partitions (empty columns indicated by dots):
.  (8)    (44)        (422)     (4211)  .  .  .  .
   (53)   (332)       (32111)
   (62)   (611)       (41111)
   (71)   (2222)      (221111)
   (431)  (3221)
   (521)  (3311)
          (5111)
          (22211)
          (311111)
          (2111111)
          (11111111)
		

Crossrefs

Row-sums are A000041.
Column k = 1 is A000009.
Column k = 2 is A237685.
Column k = 3 is A237750.
The version for run-lengths instead of run-sums is A225485 or A325280.
This statistic (trajectory length) is ranked by A353841 and A326371.
The version for compositions is A353859, see also A353847-A353858.
A005811 counts runs in binary expansion.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition
A353836 counts partitions by number of distinct run-sums.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353845 counts partitions whose run-sum trajectory ends in a singleton.

Programs

  • Mathematica
    rsn[y_]:=If[y=={},{},NestWhileList[Reverse[Sort[Total/@ Split[Sort[#]]]]&,y,!UnsameQ@@#&]];
    Table[Length[Select[IntegerPartitions[n],Length[rsn[#]]==k&]],{n,0,15},{k,0,n}]

A353866 Heinz numbers of rucksack partitions. Every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum, so these are run-knapsack partitions or rucksack partitions for short.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
The sequence contains 18 because its prime-power divisors {1,2,3,9} have prime indices {}, {1}, {2}, {2,2} with distinct sums {0,1,2,4}. On the other hand, 12 is not in the sequence because {2} and {1,1} have the same sum.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
The strong case is A353838, counted by A353837, complement A353839.
These partitions are counted by A353864.
The complete case is A353867, counted by A353865.
The complement is A354583.
A000041 counts partitions, strict A000009.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Select[msubs[primeMS[#]],SameQ@@#&]&]

A353867 Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Related concepts:
- A partition whose submultiset sums cover an initial interval is said to be complete (A126796, ranked by A325781).
- In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum.
- A complete partition that is also knapsack is said to be perfect (A002033, ranked by A325780).
- A partition whose partial runs have all different sums is said to be rucksack (A353864, ranked by A353866, complement A354583).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   32: {1,1,1,1,1}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  140: {1,1,3,4}
  176: {1,1,1,1,5}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Complete partitions are counted by A126796, ranked by A325781.
These partitions are counted by A353865.
This is a special case of A353866, counted by A353864, complement A354583.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]

A353865 Number of complete rucksack partitions of n. Partitions whose weak run-sums are distinct and cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 3, 2, 4, 3, 3, 4, 4, 3, 4, 3, 4, 5, 5, 4, 6, 4, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 9, 6, 6, 7, 6, 8, 9, 6, 6, 8, 9, 7, 9, 9, 7, 10, 9, 8, 13, 7, 10, 11, 8, 9, 10, 11, 12, 9, 11, 9, 15, 12, 12, 19, 13, 16, 16
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). A weak run-sum is the sum of any consecutive constant subsequence.
Do all positive integers appear only finitely many times in this sequence?

Examples

			The a(n) compositions for n = 1, 3, 9, 15, 18:
  (1)  (21)   (4311)       (54321)            (543321)
       (111)  (51111)      (532221)           (654111)
              (111111111)  (651111)           (7611111)
                           (81111111)         (111111111111111111)
                           (111111111111111)
For example, the weak runs of y = {7,5,4,4,3,3,3,1,1} are {}, {1}, {1,1}, {3}, {4}, {5}, {3,3}, {7}, {4,4}, {3,3,3}, with sums 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are all distinct and cover an initial interval, so y is counted under a(31).
		

Crossrefs

Perfect partitions are counted by A002033, ranked by A325780.
Knapsack partitions are counted by A108917, ranked by A299702.
This is the complete case of A353864, ranked by A353866.
These partitions are ranked by A353867.
A000041 counts partitions, strict A000009.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353850 counts compositions with all distinct run-sums, ranked by A353852.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],norqQ[Total/@Select[msubs[#],SameQ@@#&]]&]],{n,0,15}]
  • PARI
    a(n) = my(c=0, s, v); if(n, forpart(p=n, if(p[1]==1, v=List([s=1]); for(i=2, #p, if(p[i]==p[i-1], listput(v, s+=p[i]), listput(v, s=p[i]))); s=#v; listsort(v, 1); if(s==#v&&s==v[s], c++))); c, 1); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A353862 Greatest run-sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 2, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 6, 6, 6, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 8, 6, 7, 6, 16, 6, 5, 4, 8, 10, 17, 3, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 6, 8, 5, 6, 22, 4, 8
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A run-sum of a sequence is the sum of any maximal consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with run-sums {3,4}, so a(72) = 4.
		

Crossrefs

Positions of first appearances are A008578.
For binary expansion we have A038374, least A144790.
For run-lengths instead of run-sums we have A051903.
Distinct run-sums are counted by A353835, weak A353861.
The least run-sum is given by A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, compositions A353851.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run sums, nonprime A353834.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Table[Max@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k],{n,100}]

A354580 Number of rucksack compositions of n: every distinct partial run has a different sum.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 22, 39, 68, 125, 227, 402, 710, 1280, 2281, 4040, 7196, 12780, 22623, 40136, 71121, 125863, 222616, 393305, 695059, 1227990, 2167059, 3823029, 6743268, 11889431, 20955548, 36920415, 65030404, 114519168, 201612634, 354849227
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2022

Keywords

Comments

We define a partial run of a sequence to be any contiguous constant subsequence. The term rucksack is short for run-knapsack.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)    (3)      (4)        (5)
           (1,1)  (1,2)    (1,3)      (1,4)
                  (2,1)    (2,2)      (2,3)
                  (1,1,1)  (3,1)      (3,2)
                           (1,2,1)    (4,1)
                           (1,1,1,1)  (1,1,3)
                                      (1,2,2)
                                      (1,3,1)
                                      (2,1,2)
                                      (2,2,1)
                                      (3,1,1)
                                      (1,1,1,1,1)
		

Crossrefs

The knapsack version is A325676, ranked by A333223.
The non-partial version for partitions is A353837, ranked by A353838 (complement A353839).
The non-partial version is A353850, ranked by A353852.
The version for partitions is A353864, ranked by A353866.
The complete version for partitions is A353865, ranked by A353867.
These compositions are ranked by A354581.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A108917 counts knapsack partitions, ranked by A299702, strict A275972.
A238279 and A333755 count compositions by number of runs.
A275870 counts collapsible partitions, ranked by A300273.
A353836 counts partitions by number of distinct run-sums.
A353847 is the composition run-sum transformation.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions, ranked by A354908.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],UnsameQ@@Total/@Union@@Subsets/@Split[#]&]],{n,0,15}]

Extensions

Terms a(16) onward from Max Alekseyev, Sep 10 2023

A363126 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k non-modes, all 0's removed.

Original entry on oeis.org

1, 1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 8, 1, 10, 9, 3, 11, 13, 6, 15, 18, 9, 13, 24, 18, 1, 25, 24, 25, 3, 19, 36, 40, 6, 29, 41, 52, 13, 33, 45, 79, 19, 42, 57, 95, 36, 1, 39, 68, 133, 54, 3, 62, 72, 158, 87, 6, 55, 87, 214, 121, 13, 81, 95, 250, 177, 24
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			Triangle begins:
   1
   1
   2
   3
   4   1
   4   3
   8   3
   6   8   1
  10   9   3
  11  13   6
  15  18   9
  13  24  18   1
  25  24  25   3
  19  36  40   6
  29  41  52  13
  33  45  79  19
  42  57  95  36   1
  39  68 133  54   3
Row n = 9 counts the following partitions:
  (9)          (441)       (3321)
  (54)         (522)       (4221)
  (63)         (711)       (4311)
  (72)         (3222)      (5211)
  (81)         (6111)      (42111)
  (333)        (22221)     (321111)
  (432)        (32211)
  (531)        (33111)
  (621)        (51111)
  (222111)     (411111)
  (111111111)  (2211111)
               (3111111)
               (21111111)
		

Crossrefs

Row sums are A000041.
Row lengths are approximately A000196.
Column k = 0 is A047966.
For modes we have A362614, rank statistic A362611.
For co-modes we have A362615, rank statistic A362613.
Columns k > 1 sum to A363124.
Column k = 1 is A363125.
This rank statistic (number of non-modes) is A363127.
For non-co-modes we have A363130, rank statistic A363131.
A008284/A058398 count partitions by length/mean.
A275870 counts collapsible partitions.
A353836 counts partitions by number of distinct run-sums.
A359893 counts partitions by median.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				

A363124 Number of integer partitions of n with more than one non-mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 19, 28, 46, 65, 98, 132, 190, 251, 348, 451, 603, 768, 1014, 1273, 1648, 2052, 2604, 3233, 4062, 4984, 6203, 7582, 9333, 11349, 13890, 16763, 20388, 24528, 29613, 35502, 42660, 50880, 60883, 72376, 86158, 102120, 121133, 143010
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The a(7) = 1 through a(10) = 9 partitions:
  (3211)  (3221)   (3321)    (5221)
          (4211)   (4221)    (5311)
          (32111)  (4311)    (6211)
                   (5211)    (32221)
                   (42111)   (43111)
                   (321111)  (52111)
                             (322111)
                             (421111)
                             (3211111)
		

Crossrefs

For middle parts instead of non-modes we have A238479, complement A238478.
For modes instead of non-modes we have A362607, complement A362608.
For co-modes instead of non-modes we have A362609, complement A362610.
The complement is counted by A363125.
For non-co-modes instead of non-modes we have A363128, complement A363129.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]1&]],{n,0,30}]

A363125 Number of integer partitions of n with a unique non-mode.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 8, 9, 13, 18, 24, 24, 36, 41, 45, 57, 68, 72, 87, 95, 105, 131, 136, 149, 164, 199, 203, 232, 246, 276, 298, 335, 347, 409, 399, 467, 488, 567, 569, 636, 662, 757, 767, 878, 887, 1028, 1030, 1168, 1181, 1342, 1388, 1558, 1570, 1789, 1791
Offset: 0

Views

Author

Gus Wiseman, May 16 2023

Keywords

Comments

A non-mode in a multiset is an element that appears fewer times than at least one of the others. For example, the non-modes in {a,a,b,b,b,c,d,d,d} are {a,c}.

Examples

			The a(4) = 1 through a(9) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (5111)     (3222)
                          (4111)    (22211)    (6111)
                          (22111)   (41111)    (22221)
                          (31111)   (221111)   (32211)
                          (211111)  (311111)   (33111)
                                    (2111111)  (51111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
		

Crossrefs

For middle parts instead of non-modes we have A238478, complement A238479.
For modes instead of non-modes we have A362608, complement A362607.
For co-modes instead of non-modes we have A362610, complement A362609.
The complement is counted by A363124.
For non-co-modes instead of non-modes we have A363129, complement A363128.
A000041 counts integer partitions.
A008284/A058398 count partitions by length/mean.
A362611 counts modes in prime factorization, triangle A362614.
A363127 counts non-modes in prime factorization, triangle A363126.

Programs

  • Mathematica
    nmsi[ms_]:=Select[Union[ms],Count[ms,#]
    				
Showing 1-10 of 15 results. Next