cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076978 Product of the distinct primes dividing the product of composite numbers between consecutive primes.

Original entry on oeis.org

1, 2, 6, 30, 6, 210, 6, 2310, 2730, 30, 39270, 7410, 42, 7590, 46410, 1272810, 30, 930930, 82110, 6, 21111090, 1230, 48969690, 1738215570, 2310, 102, 144690, 6, 85470, 29594505363092670, 16770, 49990710, 138, 7849357706190, 30, 300690390, 20223210, 1122990, 37916970
Offset: 1

Views

Author

Amarnath Murthy, Oct 23 2002

Keywords

Comments

Equivalently, the largest squarefree number that divides the product of composite numbers between successive primes.
From Robert G. Wilson v, Dec 02 2020: (Start)
All terms greater than one are even.
Omega(a(n)): 0, 1, 2, 3, 2, 4, 2, 5, 5, 3, 6, 5, 3, 5, 6, 7, 3, 7, 6, 2, 8, 4, 8, 9, 5, ..., .
Records: 1, 2, 6, 30, 210, 2310, 2730, 39270, 46410, 1272810, 21111090, ..., (2*A354218).
Factored: 1, 2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11, 2*3*5*7*13, 2*3*5*7*11*17, 2*3*5*7*13*17, 2*3*5*7*11*19*29, ..., .
(End)

Examples

			a(4) = product of prime divisors of the product of composite numbers between 7 and 11 = 2 * 3 * 5 = 30.
a(5)=6 because 12 is the only composite number between the 5th and the 6th primes (11 and 13) and largest squarefree divisor of 12 is 6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): b:=proc(j) if issqrfree(j) then j else fi end: a:=proc(n) local B,BB: B:=divisors(product(i,i=ithprime(n)+1..ithprime(n+1)-1)): BB:=(seq(b(B[j]),j=1..nops(B))): max(BB); end: seq(a(n),n=1..33); # Emeric Deutsch, Jul 28 2006
  • Mathematica
    f[n_] := Times @@ (First@# & /@ FactorInteger[Times @@ Range[Prime[n] + 1, Prime[n + 1] - 1]]);  Array[f, 50] (* Robert G. Wilson v, Dec 02 2020 *)
  • PARI
    a(n) = my(p=1); forcomposite(c=prime(n), prime(n+1), p*=c); factorback(factorint(p)[, 1]); \\ Michel Marcus, May 29 2022
    
  • Python
    from sympy import sieve as p, primefactors
    def A076978(n):
        result = 1
        for composites in range(p[n]+1, p[n+1]):
            for primefactor in primefactors(composites):
                if result % primefactor != 0: result *= primefactor
        return result # Karl-Heinz Hofmann, May 30 2022

Formula

From Michel Marcus, May 29 2022: (Start)
a(n) = A007947(A074167(n)).
a(n) = A007947(A061214(n)). (End)

Extensions

More terms from Emeric Deutsch, Jul 28 2006
More terms from Robert G. Wilson v, Dec 02 2020
Entry revised by N. J. A. Sloane, Dec 02 2020

A354218 Records in A076978, divided by 2.

Original entry on oeis.org

1, 3, 15, 105, 1155, 1365, 19635, 23205, 636405, 10555545, 24484845, 869107785, 14797252681546335, 92442344345566215, 40334203530676690635, 1451417351374223318085, 6087255082617244520985, 469256253416014832182075245585, 1519012498286389398934397206158552189345
Offset: 1

Views

Author

Hugo Pfoertner, May 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    1/2*Union@ FoldList[Max, Array[Times @@ FactorInteger[Times @@ Range[#1 + 1, #2 - 1]][[All, 1]] & @@ Map[Prime, # + {0, 1}] &, 180, 2]] (* Michael De Vlieger, May 20 2022 *)
  • PARI
    a354218(maxterm) = {my(mp=0,pp=3); forprime(p=5,oo, my(L=List());for(j=pp+1,p-1, my(f=factor(j), nf=#f~); for(k=1,nf, listput(~L,f~[1,k]))); listsort(L,1); my(mpp=prod(k=1,#L,L[k])); if(mpp>mp, if(mpp<2*maxterm, print1(mpp/2,", "); mp=mpp, return)); pp=p)};
    a354218(10^75)
  • Python
    from sympy import sieve as p, primefactors
    def A076978_halfen(n): # for all integers n > 1
        result = 1
        for composites in range(p[n]+1, p[n+1]):
            for primefactor in primefactors(composites):
                if result % primefactor != 0: result *= primefactor
        return result//2
    A354218 = [1]
    for n in range(2,180):
        if  A076978_halfen(n) > A354218[-1]: A354218.append(A076978_halfen(n))
    print(A354218) # Karl-Heinz Hofmann, May 20 2022
    

A354219 Primes p such that the number of distinct prime factors omega of the product of the composite numbers between p and the next prime after p sets a new record.

Original entry on oeis.org

3, 5, 7, 13, 19, 31, 53, 73, 89, 113, 211, 293, 523, 887, 1129, 1327, 4297, 4831, 5351, 5591, 8467, 12853, 15683, 19609, 25471, 31397, 134513, 155921, 338033, 360653, 370261, 492113, 1349533, 1357201, 1561919, 2010733, 4652353, 8421251, 11113933, 15203977, 17051707
Offset: 1

Views

Author

Hugo Pfoertner, May 20 2022

Keywords

Examples

			a(6) = 31, because the first product of consecutive composites with 6 primes in its squarefree kernel is P = 32*33*34*35*36 with rad(P) = 2*3*5*7*11*17 = 39270, whereas the interval starting after A354217(6) = 23 leads only to 5 distinct factors, i.e., rad(24*25*26*27*28) = 2*3*5*7*13, not sufficient to beat the record set by the composites after a(5) = A354217(5) = 19 with rad(20*21*22) = 2*3*5*7*11.
		

Crossrefs

A354220 provides the corresponding values of omega.

Programs

  • Mathematica
    s = Array[PrimeNu[Times @@ FactorInteger[Times @@ Range[#1 + 1, #2 - 1]][[All, 1]] & @@ Map[Prime, # + {0, 1}]] &, 10^4]; Prime@ Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]] (* Michael De Vlieger, May 20 2022 *)
    DeleteDuplicates[Table[{p,Length[Union[Flatten[FactorInteger[#][[;;,1]]&/@Range[p+1,NextPrime[p]-1]]]]},{p,Prime[Range[ 2,10^6]]}], GreaterEqual[ #1[[2]],#2[[2]]]&][[;;,1]] (* The program generates the first 40 terms of the sequence, i.e., every term up to the 1 millionth prime. *) (* Harvey P. Dale, Feb 01 2025 *)
Showing 1-3 of 3 results.