A354463 a(n) is the number of trailing zeros in (2^n)!.
0, 0, 0, 1, 3, 7, 14, 31, 63, 126, 253, 509, 1021, 2045, 4094, 8189, 16380, 32763, 65531, 131067, 262140, 524285, 1048571, 2097146, 4194297, 8388603, 16777208, 33554424, 67108858, 134217720, 268435446, 536870902, 1073741816, 2147483642, 4294967289, 8589934584, 17179869176, 34359738358, 68719476729
Offset: 0
Examples
For n = 4, (2^4)! = 20922789888000, which has a(4) = 3 trailing zeros.
Links
- William Boyles, Table of n, a(n) for n = 0..650
Programs
-
Haskell
seq n = aux (2 ^ n) 0 where aux x acc | x < 5 = acc | otherwise = aux y (acc + y) where y = x `div` 5
-
Mathematica
a[n_]:=IntegerExponent[(2^n)!]; Array[a,38,0] (* Stefano Spezia, Jun 01 2022 *)
-
PARI
a(n) = val(1<
David A. Corneth, Jun 01 2022 -
Python
from sympy import factorial, multiplicity def a(n): return multiplicity(5, factorial(2**n, evaluate=False)) print([a(n) for n in range(39)]) # Michael S. Branicky, Jun 01 2022
-
Python
def A354463(n): c, m = 0, 2**n while m >= 5: m //= 5 c += m return c # Chai Wah Wu, Jun 02 2022
Formula
a(n) = 2^(n-2) - A055223(n) for n >= 2. - John Keith, Jun 06 2022