cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355059 a(n) is the positive integer such that psi(A355045(n)) = rad(A355045(n))^a(n), where psi(k) = A001615(k) and rad(k) = A007947(k).

Original entry on oeis.org

2, 2, 3, 5, 4, 6, 3, 5, 5, 4, 7, 6, 6, 6, 6, 4, 5, 8, 5, 5, 7, 7, 7, 4, 6, 4, 9, 4, 6, 6, 9, 6, 6, 8, 4, 8, 8, 8, 8, 5, 5, 7, 8, 7, 5, 6, 5, 10, 7, 7, 7, 7, 5, 7, 7, 7, 5, 7, 9, 7, 7, 6, 9, 9, 9, 5, 9, 7, 6, 7, 6, 6, 9, 6, 7, 9, 8, 7, 6, 8, 8, 6, 6, 11, 8, 8
Offset: 1

Views

Author

Vladislav Shubin, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    DedekindPsi[n_] := n * Product[(1 + 1/i), {i, FactorInteger[n][[All, 1]]}];
    bound = 86
    For[s = 1, s <= bound, s++,
       If[s == 1, Print["m   =   ", 1]; s = s + 1;];
       Q = Prime[s];
       InitialArray = FactorInteger[If[Q != 3, 3*(Q + 1), 2]];
       For[i = 1, i <= Length[InitialArray] - 1, i++,
            CurrentArray = FactorInteger[InitialArray[[-i, 1]] + 1] ~Join~ InitialArray;
            InitialArray = FactorInteger[Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1, Length[CurrentArray]}]];
       ];
            InitialArray = InitialArray~Join~{{Q, 0}};
            m = Max[InitialArray[[All, 2]]];
       If[Q == 3, m = m + 1];
       Print["m   =   ", m]
    ];

A356420 Integers k such that for some m >= 0, psi(k) = rad(k)^m, where psi(k) = A001615(k) and rad(k) = A007947(k).

Original entry on oeis.org

1, 18, 108, 648, 3888, 11250, 23328, 139968, 337500, 501126, 839808, 5038848, 8696754, 10125000, 30233088, 51114852, 57177414, 181398528, 303750000, 573985764, 1088391168, 2401451388, 5018345916, 5213714904, 6530347008, 9112500000, 23981814018, 26622318750, 37883060424
Offset: 1

Views

Author

Michel Marcus, Aug 06 2022

Keywords

Comments

Inspired by A355045, which has an additional constraint.
If k is a term then k*rad(k) is a term. Hence the sequence is infinite. For example, it contains 18*6^k for k >= 0. - David A. Corneth, Aug 07 2022

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)*p^(e - 1); q[1] = True; q[n_] := IntegerQ @ Log[Times @@ (fct = FactorInteger[n])[[;; , 1]], Times @@ f @@@ fct]; Select[Range[10^6], q] (* Amiram Eldar, Aug 06 2022 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    Psi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    isok(k) = if (k==1, return(1)); my(x); ispower(Psi(k),, &x) && (x == rad(k));

Extensions

More terms from Jinyuan Wang, Aug 06 2022
Showing 1-2 of 2 results.