cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Vladislav Shubin

Vladislav Shubin's wiki page.

Vladislav Shubin has authored 4 sequences.

A355059 a(n) is the positive integer such that psi(A355045(n)) = rad(A355045(n))^a(n), where psi(k) = A001615(k) and rad(k) = A007947(k).

Original entry on oeis.org

2, 2, 3, 5, 4, 6, 3, 5, 5, 4, 7, 6, 6, 6, 6, 4, 5, 8, 5, 5, 7, 7, 7, 4, 6, 4, 9, 4, 6, 6, 9, 6, 6, 8, 4, 8, 8, 8, 8, 5, 5, 7, 8, 7, 5, 6, 5, 10, 7, 7, 7, 7, 5, 7, 7, 7, 5, 7, 9, 7, 7, 6, 9, 9, 9, 5, 9, 7, 6, 7, 6, 6, 9, 6, 7, 9, 8, 7, 6, 8, 8, 6, 6, 11, 8, 8
Offset: 1

Author

Vladislav Shubin, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    DedekindPsi[n_] := n * Product[(1 + 1/i), {i, FactorInteger[n][[All, 1]]}];
    bound = 86
    For[s = 1, s <= bound, s++,
       If[s == 1, Print["m   =   ", 1]; s = s + 1;];
       Q = Prime[s];
       InitialArray = FactorInteger[If[Q != 3, 3*(Q + 1), 2]];
       For[i = 1, i <= Length[InitialArray] - 1, i++,
            CurrentArray = FactorInteger[InitialArray[[-i, 1]] + 1] ~Join~ InitialArray;
            InitialArray = FactorInteger[Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1, Length[CurrentArray]}]];
       ];
            InitialArray = InitialArray~Join~{{Q, 0}};
            m = Max[InitialArray[[All, 2]]];
       If[Q == 3, m = m + 1];
       Print["m   =   ", m]
    ];

A355045 a(n) is the least positive integer k which is a multiple of prime(n) such that for some m >= 0, psi(k) = rad(k)^m, where psi(k) = A001615(k) and rad(k) = A007947(k).

Original entry on oeis.org

18, 18, 11250, 57177414, 8696754, 10763393803185114, 501126, 23816977256250, 23981814018, 230750426250, 3730545397766934, 33914855378546706844968750, 11135545745963323734, 234030019748505421122, 246218836545018, 5018345916
Offset: 1

Author

Vladislav Shubin, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    DedekindPsi[n_] :=
      n * Product[(1 + 1/i), {i, FactorInteger[n][[All, 1]]}];
    For[s = 2, s <= 49, s++,
       If[s == 1, Print["n   =   ", 18]; s = s + 1;];
       Q = 1*Prime[s];
    InitialArray = FactorInteger[If[Q != 3, 3*(Q + 1), 2]];
    For[i = 1, i <= Length[InitialArray] - 1, i++,
      CurrentArray =
       FactorInteger[InitialArray[[-i, 1]] + 1] ~Join~ InitialArray;
          InitialArray =
       FactorInteger[Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1,
          Length[CurrentArray]}]];
      ];
    InitialArray = InitialArray ~Join~ {{Q, 0}};
    m = Max[InitialArray[[All, 2]]];
    n = Product[Power[InitialArray[[k, 1]], m - InitialArray[[k, 2]] + 1], {k, 1,
        Length[InitialArray]}];
    If[Q ==  3, m = m + 1];
    Print["n   =   " n]];

A337776 a(n) is the order of A337775(n) (as defined in that sequence).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 2, 4, 4, 4, 3, 5, 3, 5, 5, 5, 5, 5, 5, 4, 4, 6, 6, 6, 4, 6, 6, 3, 6, 3, 6, 7, 6, 5, 4, 5, 4, 7, 5, 7, 5, 5, 7, 4, 5, 5, 4, 7, 4, 7, 7, 7, 3, 8, 7, 7, 4, 7, 7, 7, 6, 6, 5, 6, 6, 5, 6, 6, 6, 8, 8, 6, 6, 4, 6, 8, 6, 6, 8, 6, 6, 6, 5, 5, 8, 8, 5, 6, 6, 8, 8, 5, 5, 8, 4, 5
Offset: 1

Author

Vladislav Shubin, Sep 20 2020

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 108, p. 38, Ellipses, Paris 2008.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problème 745 ; pp 95; 317-8, Ellipses Paris 2004.

Crossrefs

Cf. A000010 (phi), A000040 (prime), A007947 (rad), A337775.

Programs

  • Mathematica
    nn = 97;
    Sar = Table[0, {nn}]; Sar[[1]] = 2;
    (*It is a list oh the sequence A337775*)
    OrdSar = Table[0, {nn}]; OrdSar[[1]] = 0;
    (*It is a sequence A337776 - the orders of members in sequence A337775*) For[Index = 2, Index <= nn, Index++,
      InitialPrime = Prime[Index];
      InitialInteger = InitialPrime - 1;
      InitialArray = FactorInteger[InitialInteger];
      For[i = 1, i <= Length[InitialArray], i++,
       CurrentArray =
        FactorInteger[InitialArray[[-i, 1]] - 1] ~Join~ InitialArray;
       InitialInterger =
        Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1,
          Length[CurrentArray]}];
         InitialArray = FactorInteger[InitialInterger];
       ];
      InitialArray = InitialArray ~Join~ {{InitialPrime, 0}};
      Ord = Max[InitialArray[[All, 2]]];
      Lint = Product[
        Power[InitialArray[[k, 1]], Ord - InitialArray[[k, 2]] + 1], {k,
         1, Length[InitialArray]}];
      radn = Product[InitialArray[[k, 1]], {k, 1, Length[InitialArray]}];
      Sar[[Index]] = Lint;
      OrdSar[[Index]] = Ord;
      ];
    Print["Sar=  ", Sar]
    Print["OrdSar=  ", OrdSar]

Formula

rad(A337775(n))^a(n) = phi(A337775(n)).
a(n) = log(phi(A337775(n))) / log(rad(A337775(n))). - Andrew Howroyd, Sep 21 2020

A337775 a(n) is the least natural k which is a multiple of prime(n) such that for some m >= 0, phi(k) = rad(k)^m, where phi(k) = A000010(k) and rad(k) = A007947(k).

Original entry on oeis.org

2, 18, 250, 6174, 3660250, 1542294, 2839714, 41154, 117793122328750, 7978057537338, 2898701538750, 33734898, 29688151506250, 21107677374, 69834458642125879757481250, 3999523458421521342
Offset: 1

Author

Vladislav Shubin, Sep 20 2020

Keywords

Comments

The number m mentioned above is usually referred to as the order of the corresponding number a(n). The sequence of these orders is in A337776.
The algorithm suggested here for the calculation of a(n) starts its work from prime(n).
Numbers k such that phi(k) = rad(k)^m with m >= 1 are given in A211413. - Andrew Howroyd, Sep 21 2020

Examples

			For n=12 the initial prime is prime(12) = 37 and a(12) = 33734898 because phi(33734898) = 10941048, rad(33734898) = 222 and 222^3 = 10941048 and there is no smaller number satisfying the requirements. The order of a(12) is 3.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 108, p. 38, Ellipses, Paris 2008.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique Des Nombres, Problème 745 ; pp 95; 317-8, Ellipses Paris 2004.

Crossrefs

Cf. A000010 (phi), A000040 (prime), A007947 (rad), A023503, A024619, A105261, A211413.

Programs

  • Mathematica
    nn = 16;
    Sar = Table[0, {nn}]; Sar[[1]] = 2;
    (*It is a list oh the sequence A337775*)
    OrdSar = Table[0, {nn}]; OrdSar[[1]] = 0;
    (*It is a sequence A337776 - the orders of members in sequence A337775*) For[Index = 2, Index <= nn, Index++,
      InitialPrime = Prime[Index];
      InitialInteger = InitialPrime - 1;
      InitialArray = FactorInteger[InitialInteger];
      For[i = 1, i <= Length[InitialArray], i++,
       CurrentArray =
        FactorInteger[InitialArray[[-i, 1]] - 1] ~Join~ InitialArray;
       InitialInterger =
        Product[CurrentArray[[k, 1]] ^ CurrentArray[[k, 2]], {k, 1,
          Length[CurrentArray]}];
         InitialArray = FactorInteger[InitialInterger];
       ];
      InitialArray = InitialArray ~Join~ {{InitialPrime, 0}};
      Ord = Max[InitialArray[[All, 2]]];
      Lint = Product[
        Power[InitialArray[[k, 1]], Ord - InitialArray[[k, 2]] + 1], {k,
         1, Length[InitialArray]}];
      radn = Product[InitialArray[[k, 1]], {k, 1, Length[InitialArray]}];
      Sar[[Index]] = Lint;
      OrdSar[[Index]] = Ord;
      ];
    Print["Sar=  ", Sar]
    Print["OrdSar=  ", OrdSar]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]);
    isok(k) = my(phik=eulerphi(k), radk=rad(k), x=logint(phik, radk)); radk^x == phik;
    a(n) = {my(p=prime(n), k=p); while (!isok(k), k+=p); k;} \\ Michel Marcus, Sep 23 2020