cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A356002 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; 2*t+u, 2*t+v; t+2*u, t+u+v, t+2*v; u, 2*u+v, u+2*v, v].

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 3, 1, 3, 3, 1, 1, 5, 5, 7, 7, 7, 3, 9, 9, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 9, 9, 3, 9, 9, 3, 7, 9, 9, 9, 9, 9, 9, 7, 5, 7, 9, 9, 9, 9, 9, 7, 5, 1, 5, 7, 3, 9, 9, 3, 7, 5, 1, 1, 7, 7, 11, 11, 11, 5, 15, 15, 5, 17, 17, 17, 17, 17
Offset: 0

Views

Author

Rémy Sigrist, Jul 22 2022

Keywords

Comments

We apply the following substitutions to transform T(m) into T(m+1):
t
/ \
/ \
t 2*t+u 2*t+v
/ \ _\ / \ / \
/ \ / / \ / \
u-----v t+2*u t+u+v t+2*v
/ \ / \ / \
/ \ / \ / \
u---2*u+v--u+2*v--v
and:
u---2*u+v--u+2*v--v
\ / \ / \ /
\ / \ / \ /
u-----v t+2*u t+u+v t+2*v
\ / _\ \ / \ /
\ / / \ / \ /
t 2*t+u 2*t+v
\ /
\ /
t
T(m) has 3^m+1 rows, and largest term 3^m.
All terms are odd.
As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).

Examples

			Triangle T(0) is:
              1
             1 1
Triangle T(1) is:
              1
             3 3
            3 3 3
           1 3 3 1
Triangle T(2) is:
              1
             5 5
            7 7 7
           3 9 9 3
          9 9 9 9 9
         9 9 9 9 9 9
        3 9 9 3 9 9 3
       7 9 9 9 9 9 9 7
      5 7 9 9 9 9 9 7 5
     1 5 7 3 9 9 3 7 5 1
		

Crossrefs

See A355855 for a similar sequence.
Cf. A177407.

Programs

  • PARI
    See Links section.

A356096 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; 2*t-u, 2*t-v; 2*u-t, t+u+v, 2*v-t; u, 2*u-v, 2*v-u, v].

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, -1, 5, -1, 1, 1, 5, 5, 5, 5, 1, 1, -1, 5, 3, 5, -1, 1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 3, 1, -1, 5, -1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, -1, 5, -1, 1
Offset: 0

Views

Author

Rémy Sigrist, Jul 26 2022

Keywords

Comments

We apply the following substitutions to transform T(m) into T(m+1):
t
/ \
/ \
t 2*t-u 2*t-v
/ \ _\ / \ / \
/ \ / / \ / \
u-----v 2*u-t t+u+v 2*v-t
/ \ / \ / \
/ \ / \ / \
u---2*u-v--2*v-u--v
and:
u---2*u-v--2*v-u--v
\ / \ / \ /
\ / \ / \ /
u-----v 2*u-t t+u+v 2*v-t
\ / _\ \ / \ /
\ / / \ / \ /
t 2*t-u 2*t-v
\ /
\ /
t
T(m) has 3^m+1 rows.
All terms are odd.
As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).

Examples

			Triangle T(0) is:
                        1
                       1 1
Triangle T(1) is:
                        1
                       1 1
                      1 3 1
                     1 1 1 1
Triangle T(2) is:
                        1
                      1   1
                    1   3   1
                  1   1   1   1
                1  -1   5  -1   1
              1   5   5   5   5   1
            1  -1   5   3   5  -1   1
          1   1   5   5   5   5   1   1
        1   3   1  -1   5  -1   1   3   1
      1   1   1   1   1   1   1   1   1   1
		

Crossrefs

See A355855, A356002, A356097 and A356098 for similar sequences.

Programs

  • PARI
    See Links section.

A356097 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; t, t; u, t+u+v, v; u, u, v, v].

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 3, 3, 5, 1, 1, 1, 3, 3, 3, 1, 1, 1, 1, 5, 3, 3, 5, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 3, 3, 5, 1
Offset: 0

Views

Author

Rémy Sigrist, Jul 26 2022

Keywords

Comments

We apply the following substitutions to transform T(m) into T(m+1):
t
/ \
/ \
t t-----t
/ \ _\ / \ / \
/ \ / / \ / \
u-----v u---t+u+v---v
/ \ / \ / \
/ \ / \ / \
u-----u-----v-----v
and:
u-----u-----v-----v
\ / \ / \ /
\ / \ / \ /
u-----v u---t+u+v---v
\ / _\ \ / \ /
\ / / \ / \ /
t t-----t
\ /
\ /
t
T(m) has 3^m+1 rows.
All terms are odd.
As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).

Examples

			Triangle T(0) is:
              1
             1 1
Triangle T(1) is:
              1
             1 1
            1 3 1
           1 1 1 1
Triangle T(2) is:
              1
             1 1
            1 3 1
           1 1 1 1
          1 1 5 1 1
         1 5 3 3 5 1
        1 1 3 3 3 1 1
       1 1 5 3 3 5 1 1
      1 3 1 1 5 1 1 3 1
     1 1 1 1 1 1 1 1 1 1
		

Crossrefs

See A355855, A356002, A356096 and A356098 for similar sequences.
Cf. A353174.

Programs

  • PARI
    See Links section.

A356098 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; t-u, t-v; u-t, t+u+v, v-t; u, u-v, v-u, v].

Original entry on oeis.org

1, 1, 1, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 1, 1, -1, 1, -1, 0, 0, 0, 0, 0, -3, 3, -3, 0, 0, 3, 3, 3, 3, 0, 0, -3, 3, 3, 3, -3, 0, -1, 0, 3, 3, 3, 3, 0, -1, 1, 1, 0, -3, 3, -3, 0, 1, 1, 1, 1, -1, 0, 0, 0, 0, -1, 1, 1, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 2, 0, 3, 0, 2
Offset: 0

Views

Author

Rémy Sigrist, Jul 26 2022

Keywords

Comments

We apply the following substitutions to transform T(m) into T(m+1):
t
/ \
/ \
t t-u---t-v
/ \ _\ / \ / \
/ \ / / \ / \
u-----v u-t--t+u+v--v-t
/ \ / \ / \
/ \ / \ / \
u----u-v---v-u----v
and:
u----u-v---v-u----v
\ / \ / \ /
\ / \ / \ /
u-----v u-t--t+u+v--v-t
\ / _\ \ / \ /
\ / / \ / \ /
t t-u---t-v
\ /
\ /
t
T(m) has 3^m+1 rows.
As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).

Examples

			Triangle T(0) is:
                           1
                          1 1
Triangle T(1) is:
                           1
                          0 0
                         0 3 0
                        1 0 0 1
Triangle T(2) is:
                           1
                         1   1
                      -1   1  -1
                     0   0   0   0
                   0  -3   3  -3   0
                 0   3   3   3   3   0
               0  -3   3   3   3  -3   0
            -1   0   3   3   3   3   0  -1
           1   1   0  -3   3  -3   0   1   1
         1   1  -1   0   0   0   0  -1   1   1
		

Crossrefs

See A355855, A356002, A356096 and A356097 for similar sequences.

Programs

  • PARI
    See Links section.

A357743 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n, k+1) + A(n+1, k).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 3, 3, 2, 1, 3, 2, 3, 1, 3, 4, 5, 5, 4, 3, 2, 5, 3, 6, 3, 5, 2, 3, 5, 6, 5, 5, 6, 5, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 5, 7, 8, 7, 7, 8, 7, 5, 4, 3, 7, 4, 9, 5, 10, 5, 9, 4, 7, 3, 5, 8, 9, 7, 8, 11, 11, 8, 7, 9, 8, 5, 2, 7, 5, 8, 3, 9, 6, 9, 3, 8, 5, 7, 2
Offset: 0

Views

Author

Rémy Sigrist, Nov 29 2022

Keywords

Comments

This sequence is closely related to A002487 and A355855: we can build this sequence:
- by starting from an equilateral triangle with values 0, 1, 1:
0
/ \
1---1
- and repeatedly applying the following substitution:
t
/ \
t / \
/ \ --> t+u---t+v
u---v / \ / \
/ \ / \
u----u+v----v
The sequence reduced modulo an odd prime number presents rich nonperiodic patterns (see illustrations in Links section).

Examples

			Array A(n, k) begins:
  n\k |  0  1  2   3  4   5   6   7  8   9  10
  ----+---------------------------------------
    0 |  0  1  1   2  1   3   2   3  1   4   3
    1 |  1  2  3   3  4   5   5   4  5   7   8
    2 |  1  3  2   5  3   6   3   7  4   9   5
    3 |  2  3  5   6  5   5   8   9  7   8  11
    4 |  1  4  3   5  2   7   5   8  3   9   6
    5 |  3  5  6   5  7  10  11   9  8  11  11
    6 |  2  5  3   8  5  11   6  11  5  10   5
    7 |  3  4  7   9  8   9  11  10  7   7  12
    8 |  1  5  4   7  3   8   5   7  2   9   7
    9 |  4  7  9   8  9  11  10   7  9  14  17
   10 |  3  8  5  11  6  11   5  12  7  17  10
.
The first antidiagonals are:
              0
             1 1
            1 2 1
           2 3 3 2
          1 3 2 3 1
         3 4 5 5 4 3
        2 5 3 6 3 5 2
       3 5 6 5 5 6 5 3
      1 4 3 5 2 5 3 4 1
     4 5 7 8 7 7 8 7 5 4
		

Crossrefs

See A358871 for a similar sequence.

Programs

  • PARI
    A(n,k) = { if (n==0 && k==0, 0, n==1 && k==0, 1, n==0 && k==1, 1, n%2==0 && k%2==0, A(n/2,k/2), n%2==0, A(n/2,(k-1)/2) + A(n/2,(k+1)/2), k%2==0, A((n-1)/2,k/2) + A((n+1)/2,k/2), A((n+1)/2,(k-1)/2) + A((n-1)/2,(k+1)/2)); }

Formula

A(n, k) = A(k, n).
A(n, 0) = A002487(n).
A(n, 1) = A007306(n+1) for any n > 0.

A356245 A family of squares A(m), m >= 0, read by squares and then by rows; A(0) is [1, 1; 1, 1]; for m >= 0, square A(m+1) is obtained by replacing each subsquare [t, u; v, w] by [t, t+u, t+u, u; t+v, t+u+v, t+u+w, u+w; t+v, t+v+w, u+v+w, u+w; v, v+w, v+w, w] in A(m).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 1, 1, 3, 3, 2, 4, 4, 2, 3, 3, 1, 3, 5, 6, 5, 7, 7, 5, 6, 5, 3, 3, 6, 7, 5, 8, 8, 5, 7, 6, 3, 2, 5, 5, 3, 6, 6, 3, 5, 5, 2, 4, 7, 8, 6, 9, 9, 6, 8, 7, 4, 4, 7, 8, 6, 9, 9, 6, 8, 7, 4, 2, 5, 5, 3, 6, 6, 3, 5, 5, 2
Offset: 0

Views

Author

Rémy Sigrist, Jul 30 2022

Keywords

Comments

We apply the following substitutions to transform A(m) into A(m+1):
t----t+u---t+u----u
| | | |
| | | |
t-----u t+v--t+u+v-t+u+w--u+w
| | _\ | | | |
| | / | | | |
v-----w t+v--t+v+w-u+v+w--u+w
| | | |
| | | |
v----v+w---v+w----w
A(m) has 3^m+1 rows.
As m gets larger, A(m) exhibits interesting fractal features (see illustrations in Links section).

Examples

			Square A(0) is:
     1 1
     1 1
Square A(1) is:
     1 2 2 1
     2 3 3 2
     2 3 3 2
     1 2 2 1
Square A(2) is:
     1 3 3 2 4 4 2 3 3 1
     3 5 6 5 7 7 5 6 5 3
     3 6 7 5 8 8 5 7 6 3
     2 5 5 3 6 6 3 5 5 2
     4 7 8 6 9 9 6 8 7 4
     4 7 8 6 9 9 6 8 7 4
     2 5 5 3 6 6 3 5 5 2
     3 6 7 5 8 8 5 7 6 3
     3 5 6 5 7 7 5 6 5 3
     1 3 3 2 4 4 2 3 3 1
		

Crossrefs

See A355855, A356002, A356096, A356097 and A356098 for similar sequences.

Programs

  • PARI
    See Links section.

A375388 A family of squares S(m), m > 0, read by squares and then by rows; square S(1) is [1, 1; 1, 1]; for m > 0, square S(m+1) is obtained by replacing each subsquare [t, u; v, w] in S(m) by [t, t+u, u; t+v, t+u+v+w, u+w; v, v+w, w].

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 1, 2, 1, 1, 3, 2, 3, 1, 3, 9, 6, 9, 3, 2, 6, 4, 6, 2, 3, 9, 6, 9, 3, 1, 3, 2, 3, 1, 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 16, 12, 20, 8, 20, 12, 16, 4, 3, 12, 9, 15, 6, 15, 9, 12, 3, 5, 20, 15, 25, 10, 25, 15, 20, 5, 2, 8, 6, 10, 4, 10, 6, 8, 2
Offset: 1

Views

Author

Rémy Sigrist, Aug 13 2024

Keywords

Comments

We apply the following substitutions to transform S(m) into S(m+1):
t----t+u----u
| | |
t--u | t+u |
| | --> t+v----+----u+w
v--w | v+w |
| | |
v----v+w----w
This sequence can be seen as a two-dimensional variant of A049456.
The base of T(m) corresponds to the m-th row of A049456.
As A355855, this sequence is related to nonperiodic tilings based on tiles decorated with elements of F_p for some odd prime number p; here we use square tiles, there triangular tiles.

Examples

			S(1) is:
             1 1
             1 1
S(2) is:
            1 2 1
            2 4 2
            1 2 1
S(3) is:
          1 3 2 3 1
          3 9 6 9 3
          2 6 4 6 2
          3 9 6 9 3
          1 3 2 3 1
S(4) is:
  1  4  3  5  2  5  3  4  1
  4 16 12 20  8 20 12 16  4
  3 12  9 15  6 15  9 12  3
  5 20 15 25 10 25 15 20  5
  2  8  6 10  4 10  6  8  2
  5 20 15 25 10 25 15 20  5
  3 12  9 15  6 15  9 12  3
  4 16 12 20  8 20 12 16  4
  1  4  3  5  2  5  3  4  1
		

Crossrefs

Programs

  • PARI
    S(n) = { matrix(2^(n-1)+1, 2^(n-1)+1, i,j, A002487(2^(n-1)-1+i) * A002487(2^(n-1)-1+j)); }

Formula

S(m)(n, k) = A049456(m, n) * A049456(m, k).
Showing 1-7 of 7 results.