A357279 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = i + j - 1.
1, 2, 43, 2610, 312081, 61825050, 18318396195, 7586241152490, 4184711271725985, 2965919152834367730, 2626408950849351178875
Offset: 0
Examples
a(2) = 43 because the hafnian of 1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 equals M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 43.
Links
- Wikipedia, Hafnian
- Wikipedia, Symmetric matrix
Crossrefs
Programs
-
Mathematica
M[i_, j_, n_]:=Part[Part[Table[r+c-1,{r,n},{c,n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
-
PARI
tm(n) = matrix(n, n, i, j, i+j-1); a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
Extensions
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 14 2023
Comments