cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050342 Expansion of Product_{m>=1} (1+x^m)^A000009(m).

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 19, 30, 49, 77, 119, 186, 286, 438, 670, 1014, 1528, 2300, 3437, 5119, 7603, 11241, 16564, 24343, 35650, 52058, 75820, 110115, 159510, 230522, 332324, 477994, 686044, 982519, 1404243, 2003063, 2851720, 4052429, 5748440, 8140007, 11507125
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

Number of partitions of n into distinct parts with one level of parentheses. Each "part" in parentheses is distinct from all others at the same level. Thus (2+1)+(1) is allowed but (2)+(1+1) and (2+1+1) are not.

Examples

			4=(4)=(3)+(1)=(3+1)=(2+1)+(1).
From _Gus Wiseman_, Oct 11 2018: (Start)
a(n) is the number of set systems (sets of sets) whose multiset union is an integer partition of n. For example, the a(1) = 1 through a(6) = 12 set systems are:
  {{1}}  {{2}}  {{3}}      {{4}}        {{5}}        {{6}}
                {{1,2}}    {{1,3}}      {{1,4}}      {{1,5}}
                {{1},{2}}  {{1},{3}}    {{2,3}}      {{2,4}}
                           {{1},{1,2}}  {{1},{4}}    {{1,2,3}}
                                        {{2},{3}}    {{1},{5}}
                                        {{1},{1,3}}  {{2},{4}}
                                        {{2},{1,2}}  {{1},{1,4}}
                                                     {{1},{2,3}}
                                                     {{2},{1,3}}
                                                     {{3},{1,2}}
                                                     {{1},{2},{3}}
                                                     {{1},{2},{1,2}}
(End)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(g(i, i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 19 2013
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, g[n, i-1] + If[i>n, 0, g[n-i, i-1]]]]; b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i, i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 19 2015, after Alois P. Heinz *)
    nn=10;Table[SeriesCoefficient[Product[(1+x^k)^PartitionsQ[k],{k,nn}],{x,0,n}],{n,0,nn}] (* Gus Wiseman, Oct 11 2018 *)

Formula

Weigh transform of A000009.

A330462 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 2, 0, 0, 0, 0, 5, 11, 3, 0, 0, 0, 0, 0, 6, 16, 8, 0, 0, 0, 0, 0, 0, 8, 25, 15, 1, 0, 0, 0, 0, 0, 0, 10, 35, 28, 4, 0, 0, 0, 0, 0, 0, 0, 12, 52, 46, 9, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Triangle begins:
  1
  0  1
  0  1  0
  0  2  1  0
  0  2  2  0  0
  0  3  4  0  0  0
  0  4  6  2  0  0  0
  0  5 11  3  0  0  0  0
  0  6 16  8  0  0  0  0  0
  0  8 25 15  1  0  0  0  0  0
  0 10 35 28  4  0  0  0  0  0  0
  ...
Row n = 7 counts the following set-systems:
  {{7}}      {{1},{6}}      {{1},{2},{4}}
  {{1,6}}    {{2},{5}}      {{1},{2},{1,3}}
  {{2,5}}    {{3},{4}}      {{1},{3},{1,2}}
  {{3,4}}    {{1},{1,5}}
  {{1,2,4}}  {{1},{2,4}}
             {{2},{1,4}}
             {{2},{2,3}}
             {{3},{1,3}}
             {{4},{1,2}}
             {{1},{1,2,3}}
             {{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
    Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
  • PARI
    L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))}
    A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))}
    {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019

Formula

G.f.: Product_{j>=1} (1 + y*x^j)^A000009(j). - Andrew Howroyd, Dec 29 2019

A360763 Number T(n,k) of multisets of nonempty strict integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 4, 2, 1, 0, 1, 5, 8, 5, 2, 1, 0, 1, 6, 11, 10, 5, 2, 1, 0, 1, 7, 16, 18, 11, 5, 2, 1, 0, 1, 8, 22, 28, 22, 12, 5, 2, 1, 0, 1, 9, 28, 45, 39, 24, 12, 5, 2, 1, 0, 1, 10, 35, 63, 67, 46, 25, 12, 5, 2, 1, 0, 1, 11, 44, 89, 106, 86, 50, 26, 12, 5, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2023

Keywords

Comments

T(n,k) is defined for all n >= 0 and k >= 0. Terms that are not in the triangle are zero.
Reversed rows and also the columns converge to A360785.

Examples

			T(6,1) = 1: {[6]}.
T(6,2) = 5: {[1],[5]}, {[2],[4]}, {[3],[3]}, {[1,5]}, {[2,4]}.
T(6,3) = 8: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[1],[4]}, {[1],[2],[3]}, {[2],[2],[2]}.
T(6,4) = 5: {[1],[1],[1],[3]}, {[1],[1],[2],[2]}, {[1],[1],[1,3]}, {[1],[2],[1,2]}, {[1,2],[1,2]}.
T(6,5) = 2: {[1],[1],[1],[1],[2]}, {[1],[1],[1],[1,2]}.
T(6,6) = 1: {[1],[1],[1],[1],[1],[1]}.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 2,  1;
  0, 1, 3,  2,  1;
  0, 1, 4,  4,  2,  1;
  0, 1, 5,  8,  5,  2,  1;
  0, 1, 6, 11, 10,  5,  2,  1;
  0, 1, 7, 16, 18, 11,  5,  2, 1;
  0, 1, 8, 22, 28, 22, 12,  5, 2, 1;
  0, 1, 9, 28, 45, 39, 24, 12, 5, 2, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A001477(n-1) for n>=1.
Row sums give A089259.
T(2n,n) gives A360784.
T(3n,2n) gives A360785.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..12);
  • Mathematica
    h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]];
    g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i] + k - 1, k], {k, 0, j}]]]];
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]];
    T[n_] := CoefficientList[b[n, n], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Sep 12 2023, after Alois P. Heinz *)

Formula

T(3n,2n) = A360785(n) = T(3n+j,2n+j) for j>=0.
Showing 1-3 of 3 results.