cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362425 Number of partitions of n into 3 distinct perfect powers (A001597).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 3, 0, 3, 3, 1, 1, 1, 4, 1, 1, 2, 3, 1, 0, 3, 1, 2, 1, 3, 4, 2, 1, 1, 2, 3, 2, 2, 4, 1, 1, 2, 3, 2, 2, 2, 4, 1, 1, 1, 2, 2, 1, 4, 2, 2, 0, 2, 3, 4, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2023

Keywords

Crossrefs

Programs

A363040 a(n) is the smallest number which can be represented as the sum of n distinct perfect powers (A001597) in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

1, 17, 37, 53, 86, 119, 177, 215, 275, 331, 424, 516, 632, 764, 928, 1057, 1247, 1427, 1635, 1879, 2119, 2409, 2715, 3008, 3395, 3760, 4189, 4667, 5171, 5617, 6178, 6786, 7438, 8071, 8836, 9572, 10456, 11333, 12396, 13266, 14214, 15379, 16518, 17703, 19018, 20275
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2023

Keywords

Examples

			For n = 2: 17 = 1 + 16 = 8 + 9.
		

Crossrefs

Extensions

a(13) and beyond from Michael S. Branicky, May 24 2023

A365295 a(n) is the least positive integer that can be expressed as the sum of two distinct perfect powers (A001597) in exactly n ways.

Original entry on oeis.org

1, 5, 17, 129, 468, 1025, 2628, 12025, 32045, 27625, 138125, 430625, 204425, 160225, 2010025, 2348125, 801125, 1743625, 2082925, 4978025, 4005625, 12325625, 30525625, 73046025, 5928325, 13287625, 46437625, 45177925, 35409725, 120737825, 52073125, 66438125, 29641625, 32846125, 956974625
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 31 2023

Keywords

Examples

			For n = 2: a(2) = 17 = 1^2 + 2^4 = 2^3 + 3^2.
a(6) = 2628 via 3^3 + 51^2 = 2^7 + 50^2 = 18^2 + 48^2 = 21^2 + 3^7 = 2^9 + 46^2 = 30^2 + 12^3. - _David A. Corneth_, Sep 09 2023
		

Crossrefs

Programs

  • PARI
    upto(n) = {n = (sqrtint(n) + 1)^2; my(v = vector(n), pows = List([1]), r = -1, res = []); for(j = 2, logint(n, 2), for(i = 2, sqrtnint(n, j), listput(pows, i^j))); pows = Set(pows); for(i = 1, #pows - 1, j = i+1; c = pows[i] + pows[j]; while(c <= n, v[c]++; j++; c = pows[i] + pows[j])); for(i = 1, #v, c = v[i]+1; if(c > #res, res = concat(res, vector(c - #res, j, oo))); if(i < res[c], res[c] = i)); res} \\ David A. Corneth, Sep 08 2023
    
  • PARI
    \\ see link
    
  • Python
    # see link

Extensions

a(8)-a(10) from David Consiglio, Jr., Sep 08 2023
a(9) corrected and a(11)-a(34) from Hugo Pfoertner, Sep 10 2023
Showing 1-3 of 3 results.