cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000959 Lucky numbers.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, 87, 93, 99, 105, 111, 115, 127, 129, 133, 135, 141, 151, 159, 163, 169, 171, 189, 193, 195, 201, 205, 211, 219, 223, 231, 235, 237, 241, 259, 261, 267, 273, 283, 285, 289, 297, 303
Offset: 1

Views

Author

N. J. A. Sloane; entry updated Mar 07 2008

Keywords

Comments

An interesting general discussion of the phenomenon of 'random primes' (generalizing the lucky numbers) occurs in Hawkins (1958). Heyde (1978) proves that Hawkins' random primes do not only almost always satisfy the Prime Number Theorem but also the Riemann Hypothesis. - Alf van der Poorten, Jun 27 2002
Bui and Keating establish an asymptotic formula for the number of k-difference twin primes, and more generally to all l-tuples, of Hawkins primes, a probabilistic model of the Eratosthenes sieve. The formula for k = 1 was obtained by Wunderlich [Acta Arith. 26 (1974), 59 - 81]. - Jonathan Vos Post, Mar 24 2009. (This is quoted from the abstract of the Bui-Keating (2006) article, Joerg Arndt, Jan 04 2014)
It appears that a 1's line is formed, as in the Gilbreath's conjecture, if we use 2 (or 4), 3, 5 (differ of 7), 9, 13, 15, 21, 25, ... instead of A000959 1, 3, 7, 9, 13, 15, 21, 25, ... - Eric Desbiaux, Mar 25 2010
The Mersenne primes 2^p - 1 (= A000668, p in A000043) are in this sequence for p = 2, 3, 5, 7, 13, 17, and 19, but not for the following exponents p = 31, 61, and 89. - M. F. Hasler, May 06 2025

References

  • Martin Gardner, Gardner's Workout, Chapter 21 "Lucky Numbers and 2187" pp. 149-156 A. K. Peters MA 2002.
  • Richard K. Guy, Unsolved Problems in Number Theory, C3.
  • C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 99.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. L. Stein and P. R. Stein, Tables of the Number of Binary Decompositions of All Even Numbers Less Than 200,000 into Prime Numbers and Lucky Numbers. Report LA-3106, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, Sep 1964.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 116.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 114.

Crossrefs

Main diagonal of A258207.
Column 1 of A255545. (cf. also arrays A255543, A255551).
Cf. A050505 (complement).
Cf. A145649 (characteristic function).
Cf. A031883 (first differences), A254967 (iterated absolute differences), see also A054978.
Cf. A109497 (works as a left inverse function).
The Gilbreath transform is A054978 - see also A362460, A362461, A362462.

Programs

  • Haskell
    a000959 n = a000959_list !! (n-1)
    a000959_list =  1 : sieve 2 [1,3..] where
       sieve k xs = z : sieve (k + 1) (lucky xs) where
          z = xs !! (k - 1 )
          lucky ws = us ++ lucky vs where
                (us, _:vs) = splitAt (z - 1) ws
    -- Reinhard Zumkeller, Dec 05 2011
    
  • Haskell
    -- Also see links.
    (C++) // See Wilson link, Nov 14 2012
    
  • Maple
    ## luckynumbers(n) returns all lucky numbers from 1 to n. ## Try n=10^5 just for fun. luckynumbers:=proc(n) local k, Lnext, Lprev; Lprev:=[$1..n]; for k from 1 do if k=1 or k=2 then Lnext:= map(w-> Lprev[w],remove(z -> z mod Lprev[2] = 0,[$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; else Lnext:= map(w-> Lprev[w],remove(z -> z mod Lprev[k] = 0,[$1..nops(Lprev)])); if nops(Lnext)=nops(Lprev) then break fi; Lprev:=Lnext; fi; od; return Lnext; end: # Walter Kehowski, Jun 05 2008; typo fixed by Robert Israel, Nov 19 2014
    # Alternative
    A000959List := proc(mx) local i, L, n, r;
    L:= [seq(2*i+1, i=0..mx)]:
    for n from 2 while n < nops(L) do
      r:= L[n];
      L:= subsop(seq(r*i=NULL, i=1..nops(L)/r), L);
    od: L end:
    A000959List(10^3); # Robert Israel, Nov 19 2014
  • Mathematica
    luckies = 2*Range@200 - 1; f[n_] := Block[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{k}, {k, k, Length@luckies, k}]]]; Do[f@n, {n, 2, 30}]; luckies (* Robert G. Wilson v, May 09 2006 *)
    sieveMax = 10^6; luckies = Range[1, sieveMax, 2]; sieve[n_] := Module[{k = luckies[[n]]}, luckies = Delete[luckies, Table[{i}, {i, k, Length[luckies], k}]]]; n = 1; While[luckies[[n]] < Length[luckies], n++; sieve[n]]; luckies
    L = Table[2*i + 1, {i, 0, 10^3}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; L (* Jean-François Alcover, Mar 15 2016, after Robert Israel *)
  • PARI
    A000959_upto(nMax)={my(v=vectorsmall(nMax\2,k,2*k-1),i=1,q);while(v[i++]<=#v,v=vecextract(v,2^#v-1-(q=1<M. F. Hasler, Sep 22 2013, improved Jan 20 2020
    
  • Python
    def lucky(n):
        L = list(range(1, n + 1, 2))
        j = 1
        while j <= len(L) - 1 and L[j] <= len(L):
            del L[L[j]-1::L[j]]
            j += 1
        return L
    # Robert FERREOL, Nov 19 2014, corrected by F. Chapoton, Mar 29 2020, performance improved by Ely Golden, Aug 18 2022
    
  • Scheme
    (define (A000959 n) ((rowfun_n_for_A000959sieve n) n)) ;; Code for rowfun_n_for_A000959sieve given in A255543.
    ;; Antti Karttunen, Feb 26 2015

Formula

Start with the natural numbers. Delete every 2nd number, leaving 1 3 5 7 ...; the 2nd number remaining is 3, so delete every 3rd number, leaving 1 3 7 9 13 15 ...; now delete every 7th number, leaving 1 3 7 9 13 ...; now delete every 9th number; etc.
a(n) = A254967(n-1, n-1). - Reinhard Zumkeller, Feb 11 2015
a(n) = A258207(n,n). [Where A258207 is a square array constructed from the numbers remaining after each step described above.] - Antti Karttunen, Aug 06 2015
A145649(a(n)) = 1; complement of A050505. - Reinhard Zumkeller, Oct 15 2008
Other identities from Antti Karttunen, Feb 26 2015: (Start)
For all n >= 1, A109497(a(n)) = n.
For all n >= 1, a(n) = A000040(n) + A032600(n).
For all n >= 2, a(n) = A255553(A000040(n)). (End)

A054978 Obtained from sequence of lucky numbers (A000959) by taking iterated absolute value differences of terms and extracting the leading diagonal.

Original entry on oeis.org

1, 2, 2, 0, 0, 0, 2, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 2, 0, 2, 0, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 2
Offset: 0

Views

Author

Henry Gould, May 29 2000

Keywords

Comments

The classical Gilbreath-Proth Conjecture is that when iterated absolute differences are formed from the sequence of primes, the leading diagonal is 2,1,1,1,1,1,1,1,1,... (see A036262). This is an analog for the lucky numbers sequence.
This is the Gilbreath transform of the lucky numbers (cf. A362451). It appears that apart from the initial term, all the other terms are 0 or 2 (compare A362460). - N. J. A. Sloane, May 07 2023

References

  • Henry Gould, Gilbreath-Proth type sequence generated from Lucky numbers, unpublished.

Crossrefs

Programs

  • Haskell
    a054978 n = a054978_list !! n
    a054978_list = map head $ iterate
                   (\lds -> map abs $ zipWith (-) (tail lds) lds) a000959_list
    -- Reinhard Zumkeller, Feb 10 2015
  • Mathematica
    nmax = 104; (* index of last term *)
    imax = 400; (* max index of initial lucky array L *)
    L = Table[2 i + 1, {i, 0, imax}];
    For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]];
    T[n_, n_] := If[n + 1 <= Length[L], L[[n + 1]], Print["imax should be increased"]; 0];
    T[n_, k_] := T[n, k] = Abs[T[n, k + 1] - T[n - 1, k]];
    a[n_] := T[n, 0];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Sep 22 2021 *)
    A000959[upto_]:=Module[{s=2,a=Range[1,upto,2]},While[sA054978[upto_]:=Module[{d=A000959[upto]},Join[{1},Table[First[d=Abs[Differences[d]]],Length[d]-1]]];
    A054978[1000] (* Uses lucky numbers up to 1000 *) (* Paolo Xausa, May 11 2023 *)

Formula

a(n) = A254967(n,0). - Reinhard Zumkeller, Feb 11 2015

Extensions

More terms from Naohiro Nomoto, Jun 16 2001

A362462 Indices of 1's in A362460.

Original entry on oeis.org

1, 2, 6, 7, 8, 12, 14, 17, 20, 21, 23, 26, 27, 28, 31, 32, 33, 35, 36, 38, 39, 41, 44, 45, 46, 47, 50, 51, 53, 54, 56, 58, 60, 61, 62, 63, 65, 67, 68, 69, 73, 74, 75, 76, 77, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 95, 97, 101, 103, 104, 106, 108, 109, 111, 112, 116, 117, 122, 123, 124, 125, 127, 128, 129, 130, 131, 135
Offset: 1

Views

Author

N. J. A. Sloane, May 07 2023

Keywords

Crossrefs

Programs

  • C
    See Links section.
  • Mathematica
    A000959[upto_]:=Module[{s=2,a=Range[1,upto,2]},While[sA362462[upto_]:=Module[{d=A000959[upto]},Table[If[First[d=Abs[Differences[d]]]==2,n,Nothing],{n,Length[d]-1}]];
    A362462[2000] (* Uses lucky numbers up to 2000 *) (* Paolo Xausa, May 11 2023 *)
Showing 1-3 of 3 results.