A362711 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.
1, 1, 17, 1177, 210249, 76961257, 50203153993, 53127675356625, 85252003916011889, 197131843368693693937, 631233222450168374457057
Offset: 0
Examples
a(2) = 17: [4, 3, 2, 1] [3, 6, 4, 2] [2, 4, 6, 3] [1, 2, 3, 4]
References
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.
Links
- Chao Ju, Chern-Simons Theory, Ehrhart Polynomials, and Representation Theory, arXiv:2304.11830 [math-ph], 2023. See p. 14.
- Stefano Spezia, A determinantal formula for the number of trees on n labeled nodes
- Wikipedia, Hafnian
- Wikipedia, Special unitary group
- Wikipedia, Symmetric matrix
Crossrefs
Programs
-
Mathematica
M[i_, j_, n_]:=Part[Part[Table[Min[r,c](n+1)-r c, {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
-
PARI
tm(n) = matrix(n, n, i, j, min(i, j)*(n + 1) - i*j); a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
Formula
Conjecture: det(M(n)) = A000272(n+1).
The conjecture is true (see proof in Links). - Stefano Spezia, May 24 2023
Extensions
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
Comments