cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A325940 Expansion of Sum_{k>=1} x^(2*k) / (1 + x^k)^2.

Original entry on oeis.org

0, 1, -2, 4, -4, 4, -6, 11, -10, 6, -10, 18, -12, 8, -20, 26, -16, 13, -18, 28, -28, 12, -22, 48, -28, 14, -36, 38, -28, 24, -30, 57, -44, 18, -44, 62, -36, 20, -52, 74, -40, 32, -42, 58, -72, 24, -46, 110, -54, 31, -68, 68, -52, 40, -68, 100, -76, 30, -58, 116
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 09 2019

Keywords

Crossrefs

Programs

  • Magma
    A325940:= func< n | (&+[0^(n mod j)*(-1)^j*(j-1): j in [1..n]]) >;
    [A325940(n): n in [1..70]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(2 k)/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[(-1)^d (d - 1), {d, Divisors[n]}], {n, 1, 60}]
  • PARI
    {a(n) = sumdiv(n, d, (-1)^d*(d-1))} \\ Seiichi Manyama, Sep 14 2019
    
  • SageMath
    def A325940(n): return sum(0^(n%j)*(-1)^j*(j-1) for j in range(1, n+1))
    [A325940(n) for n in range(1,71)] # G. C. Greubel, Jun 22 2024

Formula

G.f.: Sum_{k>=2} (-1)^k * (k - 1) * x^k / (1 - x^k).
a(n) = Sum_{d|n} (-1)^d * (d - 1).
a(n) = A048272(n) - A002129(n).
Faster converging series: A(q) = Sum_{n >= 1} (-1)^n*q^(n^2)*((n-1)*q^(3*n) + n*q^(2*n) + (n-2)*q^n + n-1)/((1 + q^n)*(1 - q^(2*n))) - apply the operator t*d/dt to equation 1 in Arndt, then set t = -q and x = q. - Peter Bala, Jan 22 2021
a(n) = A128315(n, 2). - G. C. Greubel, Jun 22 2024

A128315 Inverse Moebius transform of signed A007318.

Original entry on oeis.org

1, 0, 1, 2, -2, 1, -1, 4, -3, 1, 2, -4, 6, -4, 1, 0, 4, -9, 10, -5, 1, 2, -6, 15, -20, 15, -6, 1, -2, 11, -24, 36, -35, 21, -7, 1, 3, -10, 29, -56, 70, -56, 28, -8, 1, 0, 6, -30, 80, -125, 126, -84, 36, -9, 1, 2, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -2, 18, -67, 176, -335, 463, -462, 330, -165, 55, -11, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 25 2007

Keywords

Comments

Examples

			First few rows of the triangle:
   1;
   0,  1;
   2, -2,  1;
  -1,  4, -3,  1;
   2, -4,  6, -4,  1;
   0,  4, -9, 10, -5, 1;
  ...
		

Crossrefs

Programs

  • Magma
    A128315:= func< n,k | (&+[0^(n mod j)*(-1)^(k+j)*Binomial(j-1, k-1): j in [k..n]]) >;
    [A128315(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    A128315[n_, k_]:= (-1)^k*DivisorSum[n, (-1)^#*Binomial[#-1, k-1] &];
    Table[A128315[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 22 2024 *)
  • SageMath
    def A128315(n,k): return sum( 0^(n%j)*(-1)^(k+j)*binomial(j-1,k-1) for j in range(k,n+1))
    flatten([[A128315(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 22 2024

Formula

T(n, k) = A051731(n, k) * A130595(n-1, k-1) as infinite lower triangular matrices.
T(n, 1) = A048272(n).
Sum_{k=1..n} T(n, k) = A000012(n) = 1 (row sums).
From G. C. Greubel, Jun 22 2024: (Start)
T(n, k) = (-1)^k * Sum_{d|n} (-1)^d * binomial(d-1, k-1).
T(n, 2) = A325940(n), n >= 2.
T(n, 3) = A363615(n), n >= 3.
T(n, 4) = A363616(n), n >= 4.
T(2*n-1, n) = (-1)^(n-1)*A000984(n-1), n >= 1.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n-1)*A081295(n).
Sum_{k=1..n} k*T(n, k) = A000034(n-1), n >= 1.
Sum_{k=1..n} (k+1)*T(n, k) = A010693(n-1), n >= 1. (End)

Extensions

a(43) = 28 inserted and more terms from Georg Fischer, Jun 05 2023

A320900 Expansion of Sum_{k>=1} x^k/(1 + x^k)^3.

Original entry on oeis.org

1, -2, 7, -12, 16, -17, 29, -48, 52, -42, 67, -105, 92, -79, 142, -184, 154, -143, 191, -262, 266, -189, 277, -441, 341, -262, 430, -495, 436, -402, 497, -712, 634, -444, 674, -897, 704, -553, 878, -1118, 862, -766, 947, -1189, 1222, -807, 1129, -1753, 1254, -992
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(add(x^k/(1+x^k)^3,k=1..n),x,n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[Sum[x^k/(1 + x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Sum[(-1)^(d + 1) d (d + 1)/2, {d, Divisors[n]}], {n, 50}]
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d+1)*d*(d + 1)/2); \\ Amiram Eldar, Jan 04 2025

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*A000217(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^(d+1)*d*(d + 1)/2.
a(n) = A000593(n) + A050999(n) - (A000203(n) + A001157(n))/2.
a(n) = (A002129(n) + A321543(n)) / 2. - Amiram Eldar, Jan 04 2025

A363616 Expansion of Sum_{k>0} x^(4*k)/(1+x^k)^4.

Original entry on oeis.org

0, 0, 0, 1, -4, 10, -20, 36, -56, 80, -120, 176, -220, 266, -368, 491, -560, 634, -816, 1050, -1160, 1210, -1540, 1982, -2028, 2080, -2656, 3192, -3276, 3380, -4060, 4986, -5080, 4896, -6008, 7345, -7140, 6954, -8656, 10224, -9880, 9796, -11480, 13552, -13668, 12650
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Magma
    A363616:= func< n | (&+[(-1)^d*Binomial(d-1,3): d in Divisors(n)]) >;
    [A363616(n): n in [1..60]]; // G. C. Greubel, Jun 22 2024
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[# - 1, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1+x^k)^4)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d-1, 3));
    
  • SageMath
    def A363616(n): return sum(0^(n%j)*(-1)^j*binomial(j-1,3) for j in range(4, n+1))
    [A363616(n) for n in range(1,61)] # G. C. Greubel, Jun 22 2024

Formula

G.f.: Sum_{k>0} binomial(k-1,3) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d-1,3).
a(n) = A128315(n, 4), for n >= 4. - G. C. Greubel, Jun 22 2024
a(n) = -(A138503(n) - 6*A321543(n) + 11*A002129(n) - 6*A048272(n)) / 6. - Amiram Eldar, Jan 04 2025

A363630 Expansion of Sum_{k>0} (1/(1+x^k)^3 - 1).

Original entry on oeis.org

-3, 3, -13, 18, -24, 21, -39, 63, -68, 48, -81, 127, -108, 87, -170, 216, -174, 156, -213, 294, -302, 201, -303, 497, -375, 276, -474, 537, -468, 426, -531, 777, -686, 462, -726, 965, -744, 573, -938, 1200, -906, 798, -993, 1251, -1306, 831, -1179, 1875, -1314, 1023, -1562, 1722, -1488, 1290, -1698
Offset: 1

Views

Author

Seiichi Manyama, Jun 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^#*Binomial[# + 2, 2] &]; Array[a, 50] (* Amiram Eldar, Jul 18 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d+2, 2));

Formula

G.f.: Sum_{k>0} binomial(k+2,2) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d+2,2).
a(n) = -(A321543(n) + 3*A002129(n) + 2*A048272(n)) / 2. - Amiram Eldar, Jan 04 2025
Showing 1-5 of 5 results.