A364336
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^3).
Original entry on oeis.org
1, 2, 7, 39, 242, 1634, 11631, 85957, 653245, 5072862, 40077807, 321106623, 2602911282, 21308131235, 175909559897, 1462846379247, 12242600576066, 103035285071630, 871490142773640, 7404121610615520, 63157400073057627, 540689217572662413, 4644083121177225292
Offset: 0
-
A364336 := proc(n)
add( binomial(3*k+1,k) * binomial(3*k+1,n-k)/(3*k+1),k=0..n) ;
end proc:
seq(A364336(n),n=0..80); # R. J. Mathar, Jul 25 2023
-
nmax = 80; A[_] = 1;
Do[A[x_] = (1 + x)*(1 + x*A[x]^3) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+1, n-k)/(3*k+1));
A364337
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^4).
Original entry on oeis.org
1, 2, 9, 68, 580, 5406, 53270, 545844, 5757332, 62094217, 681653493, 7591431752, 85558696024, 974024788280, 11184192097016, 129378232148016, 1506363564912368, 17639001584452320, 207593804132718948, 2454236122156830254, 29132714097692056954, 347086786035103983446
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^4) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(4*k+1, n-k)/(4*k+1));
A364338
G.f. satisfies A(x) = (1 + x) * (1 + x*A(x)^5).
Original entry on oeis.org
1, 2, 11, 105, 1140, 13555, 170637, 2235472, 30161255, 416248640, 5848462880, 83378361111, 1203100853951, 17537182300140, 257858115407535, 3819894878557990, 56958234329850060, 854192593184162160, 12875579347191388830, 194963091634569681550, 2964229359714424159370, 45234864131654311730160
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = (1+x)(1+x*A[x]^5) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Mar 24 2025 *)
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(5*k+1, n-k)/(5*k+1));
A366326
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^2).
Original entry on oeis.org
1, 2, -3, 14, -78, 479, -3131, 21372, -150588, 1087057, -7998295, 59763129, -452257495, 3459109408, -26697940390, 207672518808, -1626400971710, 12813379464399, -101482102525511, 807524595076284, -6452856224076654, 51760509258982478, -416620859045829372
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(n+k-2, n-k)/(3*k-1));
A364333
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 17, 216, 3224, 52640, 910452, 16392140, 303996224, 5767278431, 111401778266, 2183535060362, 43319505976084, 868220464851417, 17552981176788200, 357544690982030744, 7330803752675100908, 151172599088871911072, 3133367418601958989295, 65242183918761533467216
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+4*k+1, k)*binomial(2*n+4*k+1, n-k)/(2*n+4*k+1));
A366325
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)).
Original entry on oeis.org
1, 2, -1, 3, -10, 36, -137, 543, -2219, 9285, -39587, 171369, -751236, 3328218, -14878455, 67030785, -304036170, 1387247580, -6363044315, 29323149825, -135700543190, 630375241380, -2938391049395, 13739779184085, -64430797069375, 302934667061301, -1427763630578197
Offset: 0
-
a := proc(n) option remember; if n = 1 then 2 elif n = 2 then -1 else (-3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2))/n fi; end:
seq(a(n), n = 1..30); # Peter Bala, Sep 10 2024
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(n-2, n-k)/(2*k-1));
A366327
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^3).
Original entry on oeis.org
1, 2, -5, 33, -260, 2263, -20979, 203124, -2030121, 20786694, -216928144, 2298911699, -24673591005, 267644087524, -2929602893537, 32317666058508, -358931896710948, 4010200327457883, -45040693394259858, 508253687784232108, -5759468659295939684
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(n+2*k-2, n-k)/(4*k-1));
A366328
G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^4).
Original entry on oeis.org
1, 2, -7, 60, -612, 6898, -82806, 1038076, -13431940, 178040315, -2405137161, 32992706368, -458336721104, 6435090557964, -91167680664004, 1301665779507128, -18710805300530504, 270559054510943509, -3932893180646204203, 57437414168562779574, -842365843304975785062
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(n+3*k-2, n-k)/(5*k-1));
A364340
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + x*A(x)^6).
Original entry on oeis.org
1, 2, 15, 179, 2502, 38262, 619991, 10459410, 181771289, 3231782239, 58505593456, 1074766446526, 19984671314164, 375414901633692, 7113886504446443, 135820770971898805, 2610186429457347486, 50452256583633573513, 980187901557594671335, 19130197594133100828170, 374894511736219913097375
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k+1, k)*binomial(n+5*k+1, n-k)/(n+5*k+1));
Showing 1-9 of 9 results.