A365741 a(n) = A365740(10^n).
1, 5, 31, 189, 1261, 9595, 77681, 654249, 5650472
Offset: 0
Links
- Paul Pollack, Carl Pomerance and Enrique Treviño, Sets of monotonicity for Euler's totient function, preprint. See M2(n).
- Paul Pollack, Carl Pomerance and Enrique Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013), no. 3, 379--398.
- Terence Tao, Monotone non-decreasing sequences of the Euler totient function, arXiv:2309.02325 [math.NT], 2023.
Crossrefs
Programs
-
Python
from bisect import bisect from sympy import totient def A365741(n): k = 10**n plist = tuple(totient(i) for i in range(1,k+1) if not isprime(i)) m = len(plist) qlist, c = [0]*(m+1), 0 for i in range(m): qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i c = max(c,a) return c
Comments