A367503 Sum of the final digits of the squarefree divisors of n.
1, 3, 4, 3, 6, 12, 8, 3, 4, 8, 2, 12, 4, 14, 14, 3, 8, 12, 10, 8, 12, 6, 4, 12, 6, 12, 4, 14, 10, 22, 2, 3, 8, 14, 18, 12, 8, 20, 16, 8, 2, 26, 4, 6, 14, 12, 8, 12, 8, 8, 12, 12, 4, 12, 12, 14, 20, 20, 10, 22, 2, 6, 12, 3, 14, 24, 8, 14, 16, 24, 2, 12, 4, 14, 14, 20
Offset: 1
Examples
a(10) = 8. The squarefree divisors of 10 are 1, 2, 5, 10 and the sum of their final digits is 1 + 2 + 5 + 0 = 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local t; add(t mod 10, t = map(convert,combinat:-powerset(numtheory:-factorset(n)),`*`)) end proc: map(f, [$1..100]); # Robert Israel, Nov 21 2023
-
Mathematica
Table[DivisorSum[n, MoebiusMu[#]^2*Mod[#, 10] &], {n, 100}] Table[Total[Mod[Select[Divisors[n],SquareFreeQ],10]],{n,100}] (* Harvey P. Dale, Jun 06 2025 *)
-
PARI
a(n) = sumdiv(n, d, if (issquarefree(d), d%10)); \\ Michel Marcus, Nov 21 2023
Formula
a(n) = Sum_{d|n} mu(d)^2 * (d mod 10).
Comments