A367589
Numbers with exactly two distinct prime factors, both appearing with different exponents.
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 63, 68, 72, 75, 76, 80, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 124, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 171, 172, 175, 176, 184, 188, 189, 192, 200, 207, 208, 212, 224, 232, 236, 242, 244
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
54: {1,2,2,2}
56: {1,1,1,4}
63: {2,2,4}
68: {1,1,7}
72: {1,1,1,2,2}
These partitions are counted by
A182473.
A098859 counts partitions with distinct multiplicities, ranks
A130091.
A116608 counts partitions by number of distinct parts.
A367590
Numbers with exactly two distinct prime factors, both appearing with the same exponent.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1
The terms together with their prime indices begin:
6: {1,2} 57: {2,8} 106: {1,16}
10: {1,3} 58: {1,10} 111: {2,12}
14: {1,4} 62: {1,11} 115: {3,9}
15: {2,3} 65: {3,6} 118: {1,17}
21: {2,4} 69: {2,9} 119: {4,7}
22: {1,5} 74: {1,12} 122: {1,18}
26: {1,6} 77: {4,5} 123: {2,13}
33: {2,5} 82: {1,13} 129: {2,14}
34: {1,7} 85: {3,7} 133: {4,8}
35: {3,4} 86: {1,14} 134: {1,19}
36: {1,1,2,2} 87: {2,10} 141: {2,15}
38: {1,8} 91: {4,6} 142: {1,20}
39: {2,6} 93: {2,11} 143: {5,6}
46: {1,9} 94: {1,15} 145: {3,10}
51: {2,7} 95: {3,8} 146: {1,21}
55: {3,5} 100: {1,1,3,3} 155: {3,11}
Partitions of this type are counted by
A367588.
A116608 counts partitions by number of distinct parts.
-
Select[Range[100], SameQ@@Last/@If[#==1, {}, FactorInteger[#]]&&PrimeNu[#]==2&]
Select[Range[200],PrimeNu[#]==2&&Length[Union[FactorInteger[#][[;;,2]]]]==1&] (* Harvey P. Dale, Aug 04 2025 *)
A367449
Numbers k for which there are exactly k pairs (i, j), 1 <= i < j < k, such that i + j is a divisor of k.
Original entry on oeis.org
30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 208, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1312, 1338, 1362, 1374
Offset: 1
30 is a term since it has exactly 30 pairs (i,j): (1, 2), (2, 3), (1, 4), (2, 4), (1, 5), (4, 6), (3, 7), (2, 8), (7, 8), (1,9), (6, 9), (5, 10), (4, 11), (3, 12), (2, 13), (1, 14), (14, 16), (13, 17),(12, 18), (11, 19), (10, 20), (9, 21), (8, 22), (7, 23), (6, 24), (5, 25), (4,26), (3, 27), (2, 28), (1, 29).
-
[k:k in [1..1000]|(DivisorSigma(1,k)-#Divisors(k)-#[d:d in Divisors(k)| IsEven(d)]) eq 2*k ];
-
filter:= proc(n) uses numtheory;
sigma(n) - tau(n) - `if`(n::even, tau(n/2),0) = 2*n
end proc:
select(filter, [$1..10000]); # Robert Israel, Dec 12 2023
-
f1[p_, e_] := e+1; f1[2, e_] := 2*e+1; f2[p_, e_] := (p^(e+1)-1)/(p-1); s[1] = 0; s[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct - Times @@ f1 @@@ fct]; Select[Range[1400], s[#] == 2*# &] (* Amiram Eldar, Dec 16 2023 *)
-
isok(k) = sumdiv(k, d, (d-1)\2) == k; \\ Michel Marcus, Dec 19 2023
Showing 1-3 of 3 results.
Comments